skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A category $\mathcal{O}$ for oriented matroids
We associate to a sufficiently generic oriented matroid program and choice of linear system of parameters a finite-dimensional algebra, whose representation theory is analogous to blocks of Bernstein—Gelfand—Gelfand category\mathcal{O}. When the data above comes from a generic linear program for a hyperplane arrangement, we recover the algebra defined by Braden—Licata—Proudfoot—Webster. Applying our construction to non-linear oriented matroid programs provides a large new class of algebras. For Euclidean oriented matroid programs, the resulting algebras are quasi-hereditary and Koszul, as in the linear setting. In the non-Euclidean case, we obtain algebras that are not quasi-hereditary and not known to be Koszul, but still have a natural class of standard modules and satisfy numerical analogues of quasi-heredity and Koszulity on the level of graded Grothendieck groups.  more » « less
Award ID(s):
1802299
PAR ID:
10550365
Author(s) / Creator(s):
;
Publisher / Repository:
EMS Press
Date Published:
Journal Name:
Journal of Combinatorial Algebra
Volume:
7
Issue:
1
ISSN:
2415-6302
Page Range / eLocation ID:
159 to 226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We define a local homomorphism$$(Q,k)\to (R,\ell )$$to be Koszul if its derived fiber$$R\otimes ^{\mathsf {L}}_Q k$$is formal, and if$$\operatorname {Tor}^{Q}(R,k)$$is Koszul in the classical sense. This recovers the classical definition whenQis a field, and more generally includes all flat deformations of Koszul algebras. The non-flat case is significantly more interesting, and there is no need for examples to be quadratic: all complete intersection and all Golod quotients are Koszul homomorphisms. We show that the class of Koszul homomorphisms enjoys excellent homological properties, and we give many more examples, especially various monomial and Gorenstein examples. We then study Koszul homomorphisms from the perspective of$$\mathrm {A}_{\infty }$$-structures on resolutions. We use this machinery to construct universal free resolutions ofR-modules by generalizing a classical construction of Priddy. The resulting (infinite) free resolution of anR-moduleMis often minimal and can be described by a finite amount of data wheneverMandRhave finite projective dimension overQ. Our construction simultaneously recovers the resolutions of Shamash and Eisenbud over a complete intersection ring, and the bar resolutions of Iyengar and Burke over a Golod ring, and produces analogous resolutions for various other classes of local rings. 
    more » « less
  2. For a net of C*-algebras on a discrete metric space, we introduce a bimodule version of the DHR tensor category and show that it is an invariant of quasi-local algebras under isomorphisms with bounded spread. For abstract spin systems on a latticeL\subseteq \mathbb{R}^{n}satisfying a weak version of Haag duality, we construct a braiding on these categories. Applying the general theory to quasi-local algebrasAof operators on a lattice invariant under a (categorical) symmetry, we obtain a homomorphism from the group of symmetric QCA to\mathbf{Aut}_{\mathrm{br}}(\mathbf{DHR}(A)), containing symmetric finite-depth circuits in the kernel. For a spin chain with fusion categorical symmetry\mathcal{D}, we show that the DHR category of the quasi-local algebra of symmetric operators is equivalent to the Drinfeld center\mathcal{Z}(\mathcal{D}). We use this to show that, for the double spin-flip action\mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/2\mathbb{Z}\curvearrowright \mathbb{C}^{2}\otimes \mathbb{C}^{2}, the group of symmetric QCA modulo symmetric finite-depth circuits in 1D contains a copy ofS_{3}; hence, it is non-abelian, in contrast to the case with no symmetry. 
    more » « less
  3. We prove a number of results having to do with equipping type-I\mathrm{C}^*-algebras with compact quantum group structures, the two main ones being that such a compact quantum group is necessarily co-amenable, and that if the\mathrm{C}^*-algebra in question is an extension of a non-zero finite direct sum of elementary\mathrm{C}^*-algebras by a commutative unital\mathrm{C}^*-algebra then it must be finite-dimensional. 
    more » « less
  4. Abstract Dirac rings are commutative algebras in the symmetric monoidal category of$$\mathbb {Z}$$-graded abelian groups with the Koszul sign in the symmetry isomorphism. In the prequel to this paper, we developed the commutative algebra of Dirac rings and defined the category of Dirac schemes. Here, we embed this category in the larger$$\infty $$-category of Dirac stacks, which also contains formal Dirac schemes, and develop the coherent cohomology of Dirac stacks. We apply the general theory to stable homotopy theory and use Quillen’s theorem on complex cobordism and Milnor’s theorem on the dual Steenrod algebra to identify the Dirac stacks corresponding to$$\operatorname {MU}$$and$$\mathbb {F}_p$$in terms of their functors of points. Finally, in an appendix, we develop a rudimentary theory of accessible presheaves. 
    more » « less
  5. A representation of\mathfrak{gl}(V)=V \otimes V^{\ast}is a linear map\mu \colon \mathfrak{gl}(V) \otimes M \rightarrow Msatisfying a certain identity. By currying, giving a linear map\muis equivalent to giving a linear mapa \colon V \otimes M \rightarrow V \otimes M, and one can translate the condition for\muto be a representation into a condition ona. This alternate formulation does not use the dual ofVand makes sense for any objectVin a tensor category\mathcal{C}. We call such objects representations of thecurried general linear algebraonV. The currying process can be carried out for many algebras built out of a vector space and its dual, and we examine several cases in detail. We show that many well-known combinatorial categories are equivalent to the curried forms of familiar Lie algebras in the tensor category of linear species; for example, the titular Brauer category is the curried form of the symplectic Lie algebra. This perspective puts these categories in a new light, has some technical applications, and suggests new directions to explore. 
    more » « less