We prove a number of results having to do with equipping type-I\mathrm{C}^*-algebras with compact quantum group structures, the two main ones being that such a compact quantum group is necessarily co-amenable, and that if the\mathrm{C}^*-algebra in question is an extension of a non-zero finite direct sum of elementary\mathrm{C}^*-algebras by a commutative unital\mathrm{C}^*-algebra then it must be finite-dimensional.
more »
« less
A category $\mathcal{O}$ for oriented matroids
We associate to a sufficiently generic oriented matroid program and choice of linear system of parameters a finite-dimensional algebra, whose representation theory is analogous to blocks of Bernstein—Gelfand—Gelfand category\mathcal{O}. When the data above comes from a generic linear program for a hyperplane arrangement, we recover the algebra defined by Braden—Licata—Proudfoot—Webster. Applying our construction to non-linear oriented matroid programs provides a large new class of algebras. For Euclidean oriented matroid programs, the resulting algebras are quasi-hereditary and Koszul, as in the linear setting. In the non-Euclidean case, we obtain algebras that are not quasi-hereditary and not known to be Koszul, but still have a natural class of standard modules and satisfy numerical analogues of quasi-heredity and Koszulity on the level of graded Grothendieck groups.
more »
« less
- Award ID(s):
- 1802299
- PAR ID:
- 10550365
- Publisher / Repository:
- EMS Press
- Date Published:
- Journal Name:
- Journal of Combinatorial Algebra
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2415-6302
- Page Range / eLocation ID:
- 159 to 226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Dirac rings are commutative algebras in the symmetric monoidal category of$$\mathbb {Z}$$-graded abelian groups with the Koszul sign in the symmetry isomorphism. In the prequel to this paper, we developed the commutative algebra of Dirac rings and defined the category of Dirac schemes. Here, we embed this category in the larger$$\infty $$-category of Dirac stacks, which also contains formal Dirac schemes, and develop the coherent cohomology of Dirac stacks. We apply the general theory to stable homotopy theory and use Quillen’s theorem on complex cobordism and Milnor’s theorem on the dual Steenrod algebra to identify the Dirac stacks corresponding to$$\operatorname {MU}$$and$$\mathbb {F}_p$$in terms of their functors of points. Finally, in an appendix, we develop a rudimentary theory of accessible presheaves.more » « less
-
We generalize Jones’ planar algebras by internalising the notion to a pivotal braided tensor category . To formulate the notion, the planar tangles are now equipped with additional ‘anchor lines’ which connect the inner circles to the outer circle. We call the resulting notion ananchored planar algebra. If we restrict to the case when is the category of vector spaces, then we recover the usual notion of a planar algebra. Building on our previous work on categorified traces, we prove that there is an equivalence of categories between anchored planar algebras in and pivotal module tensor categories over equipped with a chosen self-dual generator. Even in the case of usual planar algebras, the precise formulation of this theorem, as an equivalence of categories, has not appeared in the literature. Using our theorem, we describe many examples of anchored planar algebras.more » « less
-
Abstract Each connected graded, graded-commutative algebraAof finite type over a field$$\Bbbk $$ of characteristic zero defines a complex of finitely generated, graded modules over a symmetric algebra, whose homology graded modules are called the(higher) Koszul modulesofA. In this note, we investigate the geometry of the support loci of these modules, called theresonance schemesof the algebra. When$$A=\Bbbk \langle \Delta \rangle $$ is the exterior Stanley–Reisner algebra associated to a finite simplicial complex$$\Delta $$ , we show that the resonance schemes are reduced. We also compute the Hilbert series of the Koszul modules and give bounds on the regularity and projective dimension of these graded modules. This leads to a relationship between resonance and Hilbert series that generalizes a known formula for the Chen ranks of a right-angled Artin group.more » « less
-
We establish various properties of thep-adic algebraic\text{K}-theory of smooth algebras over perfectoid rings living over perfectoid valuation rings. In particular, thep-adic\text{K}-theory of such rings is homotopy invariant, and coincides with thep-adic\text{K}-theory of thep-adic generic fibre in high degrees. In the case of smooth algebras over perfectoid valuation rings of mixed characteristic the latter isomorphism holds in all degrees and generalises a result of Nizioł.more » « less