skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 16, 2025

Title: A Single Compartment Relaxed Eddy Accumulation Method
Abstract The relaxed eddy accumulation (REA) method is a widely‐known technique that measures turbulent fluxes of scalar quantities. The REA technique has been used to measure turbulent fluxes of various compounds, such as methane, ethene, propene, butene, isoprene, nitrous oxides, ozone, and others. The REA method requires the accumulation of scalar concentrations in two separate compartments that conditionally sample updrafts and downdraft events. It is demonstrated here that the assumptions behind the conventional or two‐compartment REA approach allow for one‐compartment sampling, therefore called a one compartment or 1‐C‐REA approach, thereby expanding its operational utility. The one‐compartment sampling method is tested across various land cover types and atmospheric stability conditions, and it is found that the one‐compartment REA can provide results comparable to those determined from conventional two‐compartment REA. This finding enables rapid expansion and practical utility of REA in studies of surface‐atmosphere exchanges, interactions, and feedbacks.  more » « less
Award ID(s):
2318718 2335847 2209695 2146520 2114740
PAR ID:
10552015
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
129
Issue:
19
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Conventional and recently developed approaches for estimating turbulent scalar fluxes under stable atmospheric conditions are evaluated, with a focus on gases for which fast sensors are not readily available. First, the relaxed eddy accumulation (REA) classical approach and a recently proposed mixing length parameterization, labeled A22, are tested against eddy-covariance computations. Using high-frequency measurements collected from two contrasting sites (the frozen tundra near Utqiaġvik, Alaska, and a sparsely vegetated grassland in Wendell, Idaho, during winter), it is shown that the REA and A22 models outperform the conventional Monin–Obukhov similarity theory (MOST) utilized widely to infer fluxes from mean gradients. Second, scenarios where slow trace gas sensors are the only viable option in field measurements are investigated using digital filtering applied to fast-response sensors to simulate their slow-response counterparts. With a filtered scalar signal, the observed filtered eddy-covariance fluxes are referred to here as large-eddy-covariance (LEC) fluxes. A virtual eddy accumulation (VEA) approach, akin to the REA model but not requiring a mechanical apparatus to separate the gas flows, is also formulated and tested. A22 outperforms VEA and LEC in predicting the observed unfiltered (total) eddy-covariance (EC) fluxes; however, VEA can still capture the LEC fluxes well. This finding motivates the introduction of a sensor response time correction into the VEA formulation to offset the effect of sensor filtering on the underestimated net averaged fluxes. The only needed parameter for this correction is the mean velocity at the instrument height, a surrogate of the advective timescale. The VEA approach is very suitable and simple to use with gas sensors of intermediate speed (∼ 0.5 to 1 Hz) and with conventional open- or closed-path setups. 
    more » « less
  2. Abstract The Monin‐Obukhov Similarity Theory (MOST) links turbulent statistics to surface fluxes through universal functions. Here, we investigate its performance over a large lake, where none of its assumptions (flat homogeneous surface) are obviously violated. We probe the connection between the variance budget terms and departure from the nondimensional flux‐variance function for CO2, water vapor, and temperature. Our results indicate that both the variance storage and its vertical transport affect MOST, and these terms are most significant when small fluxes and near neutral conditions were prevalent. Such conditions are common over lakes and oceans, especially for CO2, underlining the limitation of using any MOST‐based methods to compute small fluxes. We further show that the relaxed eddy accumulation (REA) method is more robust and less sensitive to storage and transport, adequately reproducing the eddy‐covariance fluxes even for the smallest flux magnitudes. Therefore, we recommend REA over MOST methods for trace‐gas flux estimation. 
    more » « less
  3. A widely used assumption in boundary layer meteorology is the z independence of turbulent scalar fluxes Fs throughout the atmospheric surface layer, where z is the distance from the boundary. This assumption is necessary for the usage of Monin-Obukhov Similarity Theory and for the interpretation of eddy covariance measurements of Fs when using them to represent emissions or uptake from the surface. It is demonstrated here that the constant flux assumption offers intrinsic constraints on the third-order turbulent transport of Fs in the unstable atmospheric surface layer. When enforcing z independence of Fs on multilevel Fs measurements collected above different surface cover types, it is shown that increasing instability leads to a novel and universal description of (i) the imbalance between ejecting and sweeping eddy contributions to Fs and (ii) the ratio formed by a dimensionless turbulent transport of Fs and a dimensionless turbulent transport of scalar variance. When combined with structural models for the turbulent transport of Fs, these two findings offer a new perspective on “closing” triple moments beyond conventional gradient diffusion schemes. A practical outcome is a diagnostic of the constant flux assumption from single-level Fs measurements. 
    more » « less
  4. Abstract The interpretation of tower‐based eddy‐covariance (EC) turbulent flux measurements above forests hinges on three key assumptions: (1) steadiness in the flow statistics, (2) planar homogeneity of scalar sources or sinks, and (3) planar homogeneity in the flow statistics. Large eddy simulations (LESs) were used to control the first two so as to explore the break‐down of the third for idealized and real gentle topography such as those encountered in Amazonia. The LES runs were conducted using uniformly distributed sources inside homogeneous forests covering complex terrain to link the spatial patterns of scalar turbulent fluxes to topographic features. Results showed strong modulation of the fluxes by flow features induced by topography, including large area with negative fluxes compensating “chimney” regions with fluxes almost an order of magnitude larger than the landscape flux. Significant spatial heterogeneity persisted up to at least two canopy heights, where most eddy‐covariance measurements are performed above tall forests. A heterogeneity index was introduced to characterize and contrast different scenarios, and a topography categorization was shown to have predictive capabilities in identifying regions of negative and enhanced fluxes. 
    more » « less
  5. Abstract Turbulent fluctuations of scalar and velocity fields are critical for cloud microphysical processes, e.g., droplet activation and size distribution evolution, and can therefore influence cloud radiative forcing and precipitation formation. Lagrangian and Eulerian water vapor, temperature, and supersaturation statistics are investigated in direct numerical simulations (DNS) of turbulent Rayleigh–Bénard convection in the Pi Convection Cloud Chamber to provide a foundation for parameterizing subgrid-scale fluctuations in atmospheric models. A subgrid model for water vapor and temperature variances and covariance and supersaturation variance is proposed, valid for both clear and cloudy conditions. Evaluation of phase change contributions through an a priori test using DNS data shows good performance of the model. Supersaturation is a nonlinear function of temperature and water vapor, and relative external fluxes of water vapor and heat (e.g., during entrainment-mixing and phase change) influence turbulent supersaturation fluctuations. Although supersaturation has autocorrelation and structure functions similar to the independent scalars (temperature and water vapor), the autocorrelation time scale of supersaturation differs. Relative scalar fluxes in DNS without cloud make supersaturation PDFs less skewed than the adiabatic case, where they are highly negatively skewed. However, droplet condensation changes the PDF shape response: it becomes positively skewed for the adiabatic case and negatively skewed when the sidewall relative fluxes are large. Condensation also increases correlations between water vapor and temperature in the presence of relative scalar fluxes but decreases correlations for the adiabatic case. These changes in correlation suppress supersaturation variability for the nonadiabatic cases and increase it for the adiabatic case. Implications of this work for subgrid microphysics modeling using a Lagrangian stochastic scheme are also discussed. 
    more » « less