Solar flares are characterized by sudden bursts of electromagnetic radiation from the Sun’s surface, and are caused by the changes in magnetic field states in active solar regions. Earth and its surrounding space environment can suffer from various negative impacts caused by solar flares, ranging from electronic communication disruption to radiation exposure-based health risks to astronauts. In this paper, we address the solar flare prediction problem from magnetic field parameter-based multivariate time series (MVTS) data using multiple state-of-the-art machine learning classifiers that include MINImally RandOm Convolutional KErnel Transform (MiniRocket), Support Vector Machine (SVM), Canonical Interval Forest (CIF), Multiple Representations Sequence Learner (Mr-SEQL), and a Long Short-Term Memory (LSTM)-based deep learning model. Our experiment is conducted on the Space Weather Analytics for Solar Flares (SWAN-SF) benchmark data set, which is a partitioned collection of MVTS data of active region magnetic field parameters spanning over nine years of operation of the Solar Dynamics Observatory (SDO). The MVTS instances of the SWAN-SF dataset are labeled by GOES X-ray flux-based flare class labels, and attributed to extreme class imbalance because of the rarity of the major flaring events (e.g., X and M). As a performance validation metric in this class-imbalanced dataset, we used the True Skill Statistic (TSS) score. Finally, we demonstrate the advantages of the MVTS learning algorithm MiniRocket, which outperformed the aforementioned classifiers without the need for essential data preprocessing steps such as normalization, statistical summarization, and class imbalance handling heuristics. 
                        more » 
                        « less   
                    
                            
                            Impacts of Data Preprocessing and Sampling Techniques on Solar Flare Prediction from Multivariate Time Series Data of Photospheric Magnetic Field Parameters
                        
                    
    
            Abstract The accurate prediction of solar flares is crucial due to their risks to astronauts, space equipment, and satellite communication systems. Our research enhances solar flare prediction by employing sophisticated data preprocessing and sampling techniques for the Space Weather Analytics for Solar Flares (SWAN-SF) data set, a rich source of multivariate time series data of solar active regions. Our study adopts a multifaceted approach encompassing four key methodologies. Initially, we address over 10 million missing values in the SWAN-SF data set through our innovative imputation technique called fast Pearson correlation-based k-nearest neighbors imputation. Subsequently, we propose a precise normalization technique, called LSBZM normalization, tailored for time series data, merging various strategies (log, square root, Box–Cox, Z-score, and min–max) to uniformly scale the data set's 24 attributes (photospheric magnetic field parameters), addressing issues such as skewness. We also explore the “near decision boundary sample removal” technique to enhance the classification performance of the data set by effectively resolving the challenge of class overlap. Finally, a pivotal aspect of our research is a thorough evaluation of diverse oversampling and undersampling methods, including SMOTE, ADASYN, Gaussian noise injection, TimeGAN, Tomek links, and random undersampling, to counter the severe imbalance in the SWAN-SF data set, notably a 60:1 ratio of major (X and M) to minor (C, B, and FQ) flaring events in binary classification. To demonstrate the effectiveness of our methods, we use eight classification algorithms, including advanced deep-learning-based architectures. Our analysis shows significant true skill statistic scores, underscoring the importance of data preprocessing and sampling in time-series-based solar flare prediction. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10552158
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Supplement Series
- Volume:
- 275
- Issue:
- 1
- ISSN:
- 0067-0049
- Format(s):
- Medium: X Size: Article No. 6
- Size(s):
- Article No. 6
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We present a case study of solar flare forecasting by means of metadata feature time series, by treating it as a prominent class-imbalance and temporally coherent problem. Taking full advantage of pre-flare time series in solar active regions is made possible via the Space Weather Analytics for Solar Flares (SWAN-SF) benchmark data set, a partitioned collection of multivariate time series of active region properties comprising 4075 regions and spanning over 9 yr of the Solar Dynamics Observatory period of operations. We showcase the general concept of temporal coherence triggered by the demand of continuity in time series forecasting and show that lack of proper understanding of this effect may spuriously enhance models’ performance. We further address another well-known challenge in rare-event prediction, namely, the class-imbalance issue. The SWAN-SF is an appropriate data set for this, with a 60:1 imbalance ratio for GOES M- and X-class flares and an 800:1 imbalance ratio for X-class flares against flare-quiet instances. We revisit the main remedies for these challenges and present several experiments to illustrate the exact impact that each of these remedies may have on performance. Moreover, we acknowledge that some basic data manipulation tasks such as data normalization and cross validation may also impact the performance; we discuss these problems as well. In this framework we also review the primary advantages and disadvantages of using true skill statistic and Heidke skill score, two widely used performance verification metrics for the flare-forecasting task. In conclusion, we show and advocate for the benefits of time series versus point-in-time forecasting, provided that the above challenges are measurably and quantitatively addressed.more » « less
- 
            Abstract Timely and accurate prediction of solar flares is a crucial task due to the danger they pose to human life and infrastructure beyond Earth’s atmosphere. Although various machine learning algorithms have been employed to improve solar flare prediction, there has been limited focus on improving performance using outlier detection. In this study, we propose the use of a tree-based outlier detection algorithm, Isolation Forest (iForest), to identify multivariate time-series instances within the flare-forecasting benchmark data set, Space Weather Analytics for Solar Flares (SWAN-SF). By removing anomalous samples from the nonflaring class (N-class) data, we observe a significant improvement in both the true skill score and the updated Heidke skill score in two separate experiments. We focus on analyzing outliers detected by iForest at a 2.4% contamination rate, considered the most effective overall. Our analysis reveals a co-occurrence between the outliers we discovered and strong flares. Additionally, we investigated the similarity between the outliers and the strong-flare data and quantified it using Kullback–Leibler divergence. This analysis demonstrates a higher similarity between our outliers and strong-flare data when compared to the similarity between the outliers and the rest of the N-class data, supporting our rationale for using outlier detection to enhance SWAN-SF data for flare prediction. Furthermore, we explore a novel approach by treating our outliers as if they belong to flaring-class data in the training phase of our machine learning, resulting in further enhancements to our models’ performance.more » « less
- 
            Rutkowski, L.; Scherer, R.; Korytkowski, M.; Pedrycz W.; Tadeusiewicz R.; Zurada J. (Ed.)Solar flares not only pose risks to outer space technologies and astronauts’ well being, but also cause disruptions on earth to our high-tech, interconnected infrastructure our lives highly depend on. While a number of machine-learning methods have been proposed to improve flare prediction, none of them, to the best of our knowledge, have investigated the impact of outliers on the reliability and robustness of those models’ performance. In this study, we investigate the impact of outliers in a multivariate time series benchmark dataset, namely SWAN-SF, on flare prediction models, and test our hypothesis. That is, there exist outliers in SWAN-SF, removal of which enhances the performance of the prediction models on unseen datasets. We employ Isolation Forest to detect the outliers among the weaker flare instances. Several experiments are carried out using a large range of contamination rates which determine the percentage of present outliers. We assess the quality of each dataset in terms of its actual contamination using TimeSeriesSVC. In our best findings, we achieve a 279% increase in True Skill Statistic and 68% increase in Heidke Skill Score. The results show that overall a significant improvement can be achieved for flare prediction if outliers are detected and removed properly.more » « less
- 
            The purpose of this study is to provide a comprehensive resource for the selection of data representations for machine learning-oriented models and components in solar flare prediction tasks. Major solar flares occurring in the solar corona and heliosphere can bring potential destructive consequences, posing significant risks to astronauts, space stations, electronics, communication systems, and numerous technological infrastructures. For this reason, the accurate detection of major flares is essential for mitigating these hazards and ensuring the safety of our technology-dependent society. In response, leveraging machine learning techniques for predicting solar flares has emerged as a significant application within the realm of data science, relying on sensor data collected from solar active region photospheric magnetic fields by space- and ground-based observatories. In this research, three distinct solar flare prediction strategies utilizing the photospheric magnetic field parameter-based multivariate time series dataset are evaluated, with a focus on data representation techniques. Specifically, we examine vector-based, time series-based, and graph-based approaches to identify the most effective data representation for capturing key characteristics of the dataset. The vector-based approach condenses multivariate time series into a compressed vector form, the time series representation leverages temporal patterns, and the graph-based method models interdependencies between magnetic field parameters. The results demonstrate that the vector representation approach exhibits exceptional robustness in predicting solar flares, consistently yielding strong and reliable classification outcomes by effectively encapsulating the intricate relationships within photospheric magnetic field data when coupled with appropriate downstream machine learning classifiers.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
