Sharing high-quality research data specifically for reuse in future work helps the scientific community progress by enabling researchers to build upon existing work and explore new research questions without duplicating data collection efforts. Because current discussions about research artifacts in Computer Security focus on reproducibility and availability of source code, the reusability of data is unclear. We examine data sharing practices in Computer Security and Measurement to provide resources and recommendations for sharing reusable data. Our study covers five years (2019–2023) and seven conferences in Computer Security and Measurement, identifying 948 papers that create a dataset as one of their contributions. We analyze the 265 accessible datasets, evaluating their under-standability and level of reuse. Our findings reveal inconsistent practices in data sharing structure and documentation, causing some datasets to not be shared effectively. Additionally, reuse of datasets is low, especially in fields where the nature of the data does not lend itself to reuse. Based on our findings, we offer data-driven recommendations and resources for improving data sharing practices in our community. Furthermore, we encourage authors to be intentional about their data sharing goals and align their sharing strategies with those goals.
more »
« less
Navigating the Landscape of Reproducible Research: A Predictive Modeling Approach
The reproducibility of scientific articles is central to the advancement of science. Despite this importance, evaluating reproducibility remains challenging due to the scarcity of ground truth data. Predictive models can address this limitation by streamlining the tedious evaluation process. Typically, a paper’s reproducibility is inferred based on the availability of artifacts such as code, data, or supplemental information, often without extensive empirical investigation. To address these issues, we utilized artifacts of papers as fundamental units to develop a novel, dual-spectrum framework that focuses on author-centric and external-agent perspectives. We used the author-centric spectrum, followed by the external-agent spectrum, to guide a structured, model-based approach to quantify and assess reproducibility. We explored the interdependencies between different factors influencing reproducibility and found that linguistic features such as readability and lexical diversity are strongly correlated with papers achieving the highest statuses on both spectrums. Our work provides a model-driven pathway for evaluating the reproducibility of scientific research.
more »
« less
- Award ID(s):
- 2022443
- PAR ID:
- 10552268
- Publisher / Repository:
- ACM CIKM
- Date Published:
- ISBN:
- 9798400704369
- Page Range / eLocation ID:
- 24 to 33
- Subject(s) / Keyword(s):
- Reproducibility, Scientific Data, Science of Science
- Format(s):
- Medium: X
- Location:
- Boise ID USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Clouds are shareable scientific instruments that create the potential for reproducibility by ensuring that all investigators have access to a common execution platform on which computational experiments can be repeated and compared. By virtue of the interface they present, they also lead to the creation of digital artifacts compatible with the cloud, such as images or orchestration templates, that go a long way—and sometimes all the way—to representing an experiment in a digital, repeatable form. In this article, I describe how we developed these natural advantages of clouds in the Chameleon testbed and argue that we should leverage them to create a digital research marketplace that would make repeating experiments as natural and viable part of research as sharing ideas via reading papers is today.more » « less
-
Why are some research studies easy to reproduce while others are difficult? Casting doubt on the accuracy of scientific work is not fruitful, especially when an individual researcher cannot reproduce the claims made in the paper. There could be many subjective reasons behind the inability to reproduce a scientific paper. The field of Machine Learning (ML) faces a reproducibility crisis, and surveying a portion of published articles has resulted in a group realization that although sharing code repositories would be appreciable, code bases are not the end all be all for determining the reproducibility of an article. Various parties involved in the publication process have come forward to address the reproducibility crisis and solutions such as badging articles as reproducible, reproducibility checklists at conferences (NeurIPS, ICML, ICLR, etc.), and sharing artifacts on OpenReview come across as promising solutions to the core problem. The breadth of literature on reproducibility focuses on measures required to avoid ir-reproducibility, and there is not much research into the effort behind reproducing these articles. In this paper, we investigate the factors that contribute to the easiness and difficulty of reproducing previously published studies and report on the foundational framework to quantify effort of reproducibility.more » « less
-
Abstract In this paper, we explore the crucial role and challenges of computational reproducibility in geosciences, drawing insights from the Climate Informatics Reproducibility Challenge (CICR) in 2023. The competition aimed at (1) identifying common hurdles to reproduce computational climate science; and (2) creating interactive reproducible publications for selected papers of the Environmental Data Science journal. Based on lessons learned from the challenge, we emphasize the significance of open research practices, mentorship, transparency guidelines, as well as the use of technologies such as executable research objects for the reproduction of geoscientific published research. We propose a supportive framework of tools and infrastructure for evaluating reproducibility in geoscientific publications, with a case study for the climate informatics community. While the recommendations focus on future CIRCs, we expect they would be beneficial for wider umbrella of reproducibility initiatives in geosciences.more » « less
-
Physical samples and their associated (meta)data underpin scientific discoveries across disciplines, and can enable new science when appropriately archived. However, there are significant gaps in community practices and infrastructure that currently prevent accurate provenance tracking, reproducibility, and attribution. For the vast majority of samples, descriptive metadata is often sparse, inaccessible, or absent. Samples and associated (meta)data may also be scattered across numerous physical collections, data repositories, laboratories, data files, and papers with no clear linkages or provenance tracking as new information is generated over time. The Physical Samples Curation Cluster has therefore developed ‘A Scientific Author Guide for Publishing Open Research Using Physical Samples.’ This involved synthesizing existing practices, community feedback, and assessing real-world examples to identify community and infrastructure needs. We identified areas of work needed to enable authors to efficiently reference samples and related data, link related samples and data, and track their use. Our goal is to help improve the discoverability, interoperability, use of physical samples and associated (meta)data into the future.more » « less
An official website of the United States government

