skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A geometric approach to second-order differentiability of convex functions
We show a new, elementary and geometric proof of the classical Alexandrov theorem about the second order differentiability of convex functions. We also show new proofs of recent results about Lusin approximation of convex functions and convex bodies by C 1 , 1 C^{1,1} convex functions and convex bodies.  more » « less
Award ID(s):
2055171
PAR ID:
10552285
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Proceedings of the American Mathematical Society, Series B
Volume:
10
Issue:
33
ISSN:
2330-1511
Page Range / eLocation ID:
382 to 397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce the matching functions technique in the setting of Anosov flows. Then we observe that simple periodic cycle functionals (also known as temporal distances) provide a source of matching functions for conjugate Anosov flows. For conservative codimension one Anosov flows φ<#comment/> t :<#comment/> M →<#comment/> M \varphi ^t\colon M\to M , dim ⁡<#comment/> M ≥<#comment/> 4 \dim M\ge 4 , these simple periodic cycle functionals are C 1 C^1 regular and, hence, can be used to improve regularity of the conjugacy. Specifically, we prove that a continuous conjugacy must, in fact, be a C 1 C^1 diffeomorphism for an open and dense set of codimension one conservative Anosov flows. 
    more » « less
  2. In this paper, we consider higher regularity of a weak solution ( u , p ) (\mathbf {u},p) to stationary Stokes systems with variable coefficients. Under the assumptions that coefficients and data are piecewise C s , δ<#comment/> C^{s,\delta } in a bounded domain consisting of a finite number of subdomains with interfacial boundaries in C s + 1 , μ<#comment/> C^{s+1,\mu } , where s s is a positive integer, δ<#comment/> ∈<#comment/> ( 0 , 1 ) \delta \in (0,1) , and μ<#comment/> ∈<#comment/> ( 0 , 1 ] \mu \in (0,1] , we show that D u D\mathbf {u} and p p are piecewise C s , δ<#comment/> μ<#comment/> C^{s,\delta _{\mu }} , where δ<#comment/> μ<#comment/> = min { 1 2 , μ<#comment/> , δ<#comment/> } \delta _{\mu }=\min \big \{\frac {1}{2},\mu ,\delta \big \} . Our result is new even in the 2D case with piecewise constant coefficients. 
    more » « less
  3. We show that for any even log-concave probability measure μ<#comment/> \mu on R n \mathbb {R}^n , any pair of symmetric convex sets K K and L L , and any λ<#comment/> ∈<#comment/> [ 0 , 1 ] \lambda \in [0,1] , μ<#comment/> ( ( 1 −<#comment/> λ<#comment/> ) K + λ<#comment/> L ) c n ≥<#comment/> ( 1 −<#comment/> λ<#comment/> ) μ<#comment/> ( K ) c n + λ<#comment/> μ<#comment/> ( L ) c n , \begin{equation*} \mu ((1-\lambda ) K+\lambda L)^{c_n}\geq (1-\lambda ) \mu (K)^{c_n}+\lambda \mu (L)^{c_n}, \end{equation*} where c n ≥<#comment/> n −<#comment/> 4 −<#comment/> o ( 1 ) c_n\geq n^{-4-o(1)} . This constitutes progress towards the dimensional Brunn-Minkowski conjecture (see Richard J. Gardner and Artem Zvavitch [Tran. Amer. Math. Soc. 362 (2010), pp. 5333–5353]; Andrea Colesanti, Galyna V. Livshyts, Arnaud Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120–1139]). Moreover, our bound improves for various special classes of log-concave measures. 
    more » « less
  4. Let f f be analytic on [ 0 , 1 ] [0,1] with | f ( k ) ( 1 / 2 ) | ⩽<#comment/> A α<#comment/> k k ! |f^{(k)}(1/2)|\leqslant A\alpha ^kk! for some constants A A and α<#comment/> > 2 \alpha >2 and all k ⩾<#comment/> 1 k\geqslant 1 . We show that the median estimate of μ<#comment/> = ∫<#comment/> 0 1 f ( x ) d x \mu =\int _0^1f(x)\,\mathrm {d} x under random linear scrambling with n = 2 m n=2^m points converges at the rate O ( n −<#comment/> c log ⁡<#comment/> ( n ) ) O(n^{-c\log (n)}) for any c > 3 log ⁡<#comment/> ( 2 ) / π<#comment/> 2 ≈<#comment/> 0.21 c> 3\log (2)/\pi ^2\approx 0.21 . We also get a super-polynomial convergence rate for the sample median of 2 k −<#comment/> 1 2k-1 random linearly scrambled estimates, when k / m k/m is bounded away from zero. When f f has a p p ’th derivative that satisfies a λ<#comment/> \lambda -Hölder condition then the median of means has error O ( n −<#comment/> ( p + λ<#comment/> ) + ϵ<#comment/> ) O( n^{-(p+\lambda )+\epsilon }) for any ϵ<#comment/> > 0 \epsilon >0 , if k →<#comment/> ∞<#comment/> k\to \infty as m →<#comment/> ∞<#comment/> m\to \infty . The proof techniques use methods from analytic combinatorics that have not previously been applied to quasi-Monte Carlo methods, most notably an asymptotic expression from Hardy and Ramanujan on the number of partitions of a natural number. 
    more » « less
  5. In this paper we derive the best constant for the following L ∞<#comment/> L^{\infty } -type Gagliardo-Nirenberg interpolation inequality ‖<#comment/> u ‖<#comment/> L ∞<#comment/> ≤<#comment/> C q , ∞<#comment/> , p ‖<#comment/> u ‖<#comment/> L q + 1 1 −<#comment/> θ<#comment/> ‖<#comment/> ∇<#comment/> u ‖<#comment/> L p θ<#comment/> , θ<#comment/> = p d d p + ( p −<#comment/> d ) ( q + 1 ) , \begin{equation*} \|u\|_{L^{\infty }}\leq C_{q,\infty ,p} \|u\|^{1-\theta }_{L^{q+1}}\|\nabla u\|^{\theta }_{L^p},\quad \theta =\frac {pd}{dp+(p-d)(q+1)}, \end{equation*} where parameters q q and p p satisfy the conditions p > d ≥<#comment/> 1 p>d\geq 1 , q ≥<#comment/> 0 q\geq 0 . The best constant C q , ∞<#comment/> , p C_{q,\infty ,p} is given by C q , ∞<#comment/> , p = θ<#comment/> −<#comment/> θ<#comment/> p ( 1 −<#comment/> θ<#comment/> ) θ<#comment/> p M c −<#comment/> θ<#comment/> d , M c ∫<#comment/> R d u c , ∞<#comment/> q + 1 d x , \begin{equation*} C_{q,\infty ,p}=\theta ^{-\frac {\theta }{p}}(1-\theta )^{\frac {\theta }{p}}M_c^{-\frac {\theta }{d}},\quad M_c≔\int _{\mathbb {R}^d}u_{c,\infty }^{q+1} dx, \end{equation*} where u c , ∞<#comment/> u_{c,\infty } is the unique radial non-increasing solution to a generalized Lane-Emden equation. The case of equality holds when u = A u c , ∞<#comment/> ( λ<#comment/> ( x −<#comment/> x 0 ) ) u=Au_{c,\infty }(\lambda (x-x_0)) for any real numbers A A , λ<#comment/> > 0 \lambda >0 and x 0 ∈<#comment/> R d x_{0}\in \mathbb {R}^d . In fact, the generalized Lane-Emden equation in R d \mathbb {R}^d contains a delta function as a source and it is a Thomas-Fermi type equation. For q = 0 q=0 or d = 1 d=1 , u c , ∞<#comment/> u_{c,\infty } have closed form solutions expressed in terms of the incomplete Beta functions. Moreover, we show that u c , m →<#comment/> u c , ∞<#comment/> u_{c,m}\to u_{c,\infty } and C q , m , p →<#comment/> C q , ∞<#comment/> , p C_{q,m,p}\to C_{q,\infty ,p} as m →<#comment/> + ∞<#comment/> m\to +\infty for d = 1 d=1 , where u c , m u_{c,m} and C q , m , p C_{q,m,p} are the function achieving equality and the best constant of L m L^m -type Gagliardo-Nirenberg interpolation inequality, respectively. 
    more » « less