skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Education researchers as negotiators: Leveraging expertise across teachers and scientists to implement authentic data investigations in grade 7–12 classrooms
Abstract Incorporating authentic research skills and practices into K‐12 science, technology, engineering, and mathematics (STEM) instruction is a challenging yet crucial approach for introducing students to authentic science inquiry. While recommendations for emphasizing data literacy and quantitative reasoning in science classroom contexts are well‐established, implementation remains challenging. Over the span of 4 years (2019–2023), a multi‐institution team of teachers, education researchers, and forest scientists established a partnership with the overarching goal of integrating authentic forest research and data into middle and high school classrooms. The education researchers played a critical role in facilitating effective scientist and teacher interactions while addressing classroom implementation challenges. Importantly, the effectiveness and mutual benefits of the research partnership were greatly influenced by specific practices implemented by the education research team, and the assumption of different collaborative roles by all stakeholders involved. In this study, we examine these roles, relationships, and interactions of all stakeholders in the partnership, with “stakeholder” referring to participating teachers, education researchers, and collaborating forest scientists.  more » « less
Award ID(s):
1920908
PAR ID:
10552364
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
School Science and Mathematics
ISSN:
0036-6803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background and Context: Most large-scale statewide initiatives of the Computer Science for All (CS for All) movement have focused on the classroom level. Critical questions remain about building school and district leadership capacity to support teachers while implementing equitable computer science education that is scalable and sustainable. Objective: This statewide research-practice partnership, involving university researchers and school leaders from 14 local education agencies (LEA) from district and county offices, addresses the following research question: What do administrators identify as most helpful for understanding issues related to equitable computer science implementation when engaging with a guide and workshop we collaboratively developed to help leadership in such efforts? Method: Participant surveys, interviews, and workshop observations were analyzed to understand best practices for professional development supporting educational leaders. Findings: Administrators value computer science professional development resources that: (a) have a clear focus on “equity;” (b) engage with data and examples that deepen understandings of equity; (c) provide networking opportunities; (d) have explicit workshop purpose and activities; and (e) support deeper discussions of computer science implementation challenges through pairing a workshop and a guide. Implications: Utilizing Ishimaru and Galloway’s (2014) framework for equitable leadership practices, this study offers an actionable construct for equitable implementation of computer science including (a) how to build equity leadership and vision; (b) how to enact that vision; and (c) how to scale and sustain that vision. While this construct applies to equitable leadership practices more broadly across all disciplines, we found its application particularly useful when explicitly focused on equity leadership practices in computer science. 
    more » « less
  2. Abstract Reformed science curricula provide opportunities for students to engage with authentic science practices. However, teacher implementation of such curricula requires teachers to consider their role in the classroom, including realigning instructional decisions with the epistemic aims of science. Guiding newcomers in science can take place in settings ranging from the classroom to the undergraduate research laboratory. We suggest thinking about the potential intersections of guiding students across these contexts is important. We describe the Classroom‐Research‐Mentoring (CRM) Framework as a novel lens for examining science practice‐based instruction. We present a comparative case study of two teachers as they instruct undergraduate students in a model‐based inquiry laboratory. We analyzed stimulated‐recall episodes uncovering how these teachers interacted with their students and the rationale behind their instructional choices. Through the application of the CRM Framework, we revealed ways teachers can have instructional goals that align with those of a research mentor. For example, our teachers had the goals of “creating an inclusive environment open to student ideas,” “acknowledging students as scientists,” and “focusing students on skills and ideas needed to solve biological problems.” We suggest three functions of research mentoring that translate across the classroom and research laboratory settings: (1) build a shared understanding of epistemic aims, (2) support learners in the productive use of science practices, and (3) motivate learner engagement in science practices. 
    more » « less
  3. MindHive is an online, open science, citizen science platform co-designed by a team of educational researchers, teachers, cognitive and social scientists, UX researchers, community organizers, and software developers to support real-world brain and behavior research for (a) high school students and teachers who seek authentic STEM research experiences, (b) neuroscientists and cognitive/social psychologists who seek to address their research questions outside of the lab, and (c) community-based organizations who seek to conduct grassroots, science-based research for policy change. In the high school classroom, students engage with lessons and studies created by cognitive and social neuroscientists, provide peer feedback on studies designed by students within a network of schools across the country, and develop and carry out their own online citizen science studies. By guiding them through both discovery (student-as-participant) and creation (student-as-scientist) stages of citizen science inquiry, MindHive aims to help learners and communities both inside and beyond the classroom to contextualize their own cognition and social behavior within population-wide patterns; to formulate generalizable and testable research questions; and to derive implications from findings and translate these into personal and social action. 
    more » « less
  4. null (Ed.)
    Authentic, “messy data” contain variability that comes from many sources, such as natural variation in nature, chance occurrences during research, and human error. It is this messiness that both deters potential users of authentic data and gives data the power to create unique learning opportunities that reveal the nature of science itself. While the value of bringing contemporary research and messy data into the classroom is recognized, implementation can seem overwhelming. We discuss the importance of frequent interactions with messy data throughout K–16 science education as a mechanism for students to engage in the practices of science, such as visualizing, analyzing, and interpreting data. Next, we describe strategies to help facilitate the use of messy data in the classroom while building complexity over time. Finally, we outline one potential sequence of activities, with specific examples, to highlight how various activity types can be used to scaffold students' interactions with messy data. 
    more » « less
  5. Bringing Research into the Classroom (BRIC) engaged rural K-12 science teachers in sustained, mentored science research. BRIC’s goal was to equip teachers with the knowledge, skills, and dispositions to provide high-quality biomedical research opportunities for K-12 students and teachers. Programmatic elements included authentic, place-based, microbiology outreach in K-12 classrooms, summer teacher research academies focused on content knowledge and research, and a capstone symposium. Over 9,000 Montana students collected and tested environmental samples to isolate new-toscience bacteriophages (viruses that infect bacteria). University scientists, faculty, and students mentored K-12 teachers and students during classroom outreach visits and teacher research academies. BRIC aimed to increase teacher and student bacteriophage content knowledge and research skills through meaningful, mentored research projects. BRIC researchers hypothesized greater program impacts from intensive teacher professional development combined with classroom outreach, compared to classroom outreach visits alone. Program evaluation compared two cohorts of teachers, which each received all programmatic elements through a four-year, staggered rollout. Teachers and students were assessed for gains in knowledge, skills, and science attitudes. A subset of our evaluation instruments and outcomes, program dissemination, lessons learned, and recommendations for replicating the BRIC model are discussed. 
    more » « less