We study homeomorphisms of a Cantor set with$$k$$($$k<+\infty$$) minimal invariant closed (but not open) subsets; we also study crossed product C*-algebras associated to these Cantor systems and certain of their orbit-cut sub-C*-algebras. In the case where$$k\geq 2$$, the crossed product C*-algebra is stably finite, has stable rank 2, and has real rank 0 if in addition$$(X,\unicode[STIX]{x1D70E})$$is aperiodic. The image of the index map is connected to certain directed graphs arising from the Bratteli–Vershik–Kakutani model of the Cantor system. Using this, it is shown that the ideal of the Bratteli diagram (of the Bratteli–Vershik–Kakutani model) must have at least$$k$$vertices at each level, and the image of the index map must consist of infinitesimals.
more »
« less
The Furstenberg–Poisson boundary and CAT(0) cube complexes
We show under weak hypotheses that$$\unicode[STIX]{x2202}X$$, the Roller boundary of a finite-dimensional CAT(0) cube complex$$X$$is the Furstenberg–Poisson boundary of a sufficiently nice random walk on an acting group$$\unicode[STIX]{x1D6E4}$$. In particular, we show that if$$\unicode[STIX]{x1D6E4}$$admits a non-elementary proper action on$$X$$, and$$\unicode[STIX]{x1D707}$$is a generating probability measure of finite entropy and finite first logarithmic moment, then there is a$$\unicode[STIX]{x1D707}$$-stationary measure on$$\unicode[STIX]{x2202}X$$making it the Furstenberg–Poisson boundary for the$$\unicode[STIX]{x1D707}$$-random walk on$$\unicode[STIX]{x1D6E4}$$. We also show that the support is contained in the closure of the regular points. Regular points exhibit strong contracting properties.
more »
« less
- Award ID(s):
- 1312928
- PAR ID:
- 10552513
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Ergodic Theory and Dynamical Systems
- Volume:
- 38
- Issue:
- 6
- ISSN:
- 0143-3857
- Page Range / eLocation ID:
- 2180 to 2223
- Subject(s) / Keyword(s):
- 22E40 20F65 37D40 57Q99 60B15
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Cohesive powersof computable structures are effective analogs of ultrapowers, where cohesive sets play the role of ultrafilters. Let$$\omega $$,$$\zeta $$, and$$\eta $$denote the respective order-types of the natural numbers, the integers, and the rationals when thought of as linear orders. We investigate the cohesive powers of computable linear orders, with special emphasis on computable copies of$$\omega $$. If$$\mathcal {L}$$is a computable copy of$$\omega $$that is computably isomorphic to the usual presentation of$$\omega $$, then every cohesive power of$$\mathcal {L}$$has order-type$$\omega + \zeta \eta $$. However, there are computable copies of$$\omega $$, necessarily not computably isomorphic to the usual presentation, having cohesive powers not elementarily equivalent to$$\omega + \zeta \eta $$. For example, we show that there is a computable copy of$$\omega $$with a cohesive power of order-type$$\omega + \eta $$. Our most general result is that if$$X \subseteq \mathbb {N} \setminus \{0\}$$is a Boolean combination of$$\Sigma _2$$sets, thought of as a set of finite order-types, then there is a computable copy of$$\omega $$with a cohesive power of order-type$$\omega + \boldsymbol {\sigma }(X \cup \{\omega + \zeta \eta + \omega ^*\})$$, where$$\boldsymbol {\sigma }(X \cup \{\omega + \zeta \eta + \omega ^*\})$$denotes the shuffle of the order-types inXand the order-type$$\omega + \zeta \eta + \omega ^*$$. Furthermore, ifXis finite and non-empty, then there is a computable copy of$$\omega $$with a cohesive power of order-type$$\omega + \boldsymbol {\sigma }(X)$$.more » « less
-
Abstract In this paper, we consider random dynamical systems formed by concatenating maps acting on the unit interval$$[0,1]$$in an independent and identically distributed (i.i.d.) fashion. Considered as a stationary Markov process, the random dynamical system possesses a unique stationary measure$$\nu $$. We consider a class of non-square-integrable observables$$\phi $$, mostly of form$$\phi (x)=d(x,x_0)^{-{1}/{\alpha }}$$, where$$x_0$$is a non-recurrent point (in particular a non-periodic point) satisfying some other genericity conditions and, more generally, regularly varying observables with index$$\alpha \in (0,2)$$. The two types of maps we concatenate are a class of piecewise$$C^2$$expanding maps and a class of intermittent maps possessing an indifferent fixed point at the origin. Under conditions on the dynamics and$$\alpha $$, we establish Poisson limit laws, convergence of scaled Birkhoff sums to a stable limit law, and functional stable limit laws in both the annealed and quenched case. The scaling constants for the limit laws for almost every quenched realization are the same as those of the annealed case and determined by$$\nu $$. This is in contrast to the scalings in quenched central limit theorems where the centering constants depend in a critical way upon the realization and are not the same for almost every realization.more » « less
-
Let$$X$$be a smooth geometrically connected projective curve over the field of fractions of a discrete valuation ring$$R$$, and$$\mathfrak {m}$$a modulus on$$X$$, given by a closed subscheme of$$X$$which is geometrically reduced. The generalized Jacobian$$J_\mathfrak {m}$$of$$X$$with respect to$$\mathfrak {m}$$is then an extension of the Jacobian of$$X$$by a torus. We describe its Néron model, together with the character and component groups of the special fibre, in terms of a regular model of$$X$$over$$R$$. This generalizes Raynaud's well-known description for the usual Jacobian. We also give some computations for generalized Jacobians of modular curves$$X_0(N)$$with moduli supported on the cusps.more » « less
-
Abstract We study higher uniformity properties of the Möbius function$$\mu $$, the von Mangoldt function$$\Lambda $$, and the divisor functions$$d_k$$on short intervals$$(X,X+H]$$with$$X^{\theta +\varepsilon } \leq H \leq X^{1-\varepsilon }$$for a fixed constant$$0 \leq \theta < 1$$and any$$\varepsilon>0$$. More precisely, letting$$\Lambda ^\sharp $$and$$d_k^\sharp $$be suitable approximants of$$\Lambda $$and$$d_k$$and$$\mu ^\sharp = 0$$, we show for instance that, for any nilsequence$$F(g(n)\Gamma )$$, we have$$\begin{align*}\sum_{X < n \leq X+H} (f(n)-f^\sharp(n)) F(g(n) \Gamma) \ll H \log^{-A} X \end{align*}$$ when$$\theta = 5/8$$and$$f \in \{\Lambda , \mu , d_k\}$$or$$\theta = 1/3$$and$$f = d_2$$. As a consequence, we show that the short interval Gowers norms$$\|f-f^\sharp \|_{U^s(X,X+H]}$$are also asymptotically small for any fixedsfor these choices of$$f,\theta $$. As applications, we prove an asymptotic formula for the number of solutions to linear equations in primes in short intervals and show that multiple ergodic averages along primes in short intervals converge in$$L^2$$. Our innovations include the use of multiparameter nilsequence equidistribution theorems to control type$$II$$sums and an elementary decomposition of the neighborhood of a hyperbola into arithmetic progressions to control type$$I_2$$sums.more » « less
An official website of the United States government

