skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nitrogen Cycling Feedback on Carbon Dynamics Leads to Greater CH 4 Emissions and Weaker Cooling Effect of Northern Peatlands
Abstract Northern peatlands have been a carbon sink since their initiation. This has been simulated by existing process‐based models. However, most of these models are limited by lacking sufficient processes of the N cycle in peatlands. Here, we use a peatland biogeochemistry model incorporated with N‐related processes of fixation, deposition, gas emission, loss through water flow, net mineralization, plant uptake and litterfall to project the role of the peatlands in future radiative forcing (RF). Simulations from 15‐ka BP to 2100 are conducted driven by CMIP5 climate forcing data of IPSL‐CM5A‐LR and bcc‐csm1‐1, including warming scenarios of RCP 2.6, RCP 4.5 and RCP 8.5. During the Holocene, northern peatlands have an increasing cooling effect with RF up to −0.57 W m−2. By 1990, these peatlands accumulate 408 Pg C and 7.8 Pg N. Under warming, increasing mineral N content enhances plant net primary productivity; the cooling effect persists. However, RF increases by 0.1–0.5 W m−2during the 21st century, mainly due to the stimulated CH4emissions. Northern peatlands could switch from a C sink to a source when the annual temperature exceeds −2.2 to −0.5°C. This study highlights that the improved N cycle causes higher CO2‐C sink capacity in northern peatlands. However, it also causes a significant increase in CH4emissions, which weakens the cooling effect of northern peatlands in future climate.  more » « less
Award ID(s):
1802832 1802810
PAR ID:
10552558
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley publisher
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
38
Issue:
4
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Northern peatlands have accumulated large stocks of organic carbon (C) and nitrogen (N), but their spatial distribution and vulnerability to climate warming remain uncertain. Here, we used machine-learning techniques with extensive peat core data ( n > 7,000) to create observation-based maps of northern peatland C and N stocks, and to assess their response to warming and permafrost thaw. We estimate that northern peatlands cover 3.7 ± 0.5 million km 2 and store 415 ± 150 Pg C and 10 ± 7 Pg N. Nearly half of the peatland area and peat C stocks are permafrost affected. Using modeled global warming stabilization scenarios (from 1.5 to 6 °C warming), we project that the current sink of atmospheric C (0.10 ± 0.02 Pg C⋅y −1 ) in northern peatlands will shift to a C source as 0.8 to 1.9 million km 2 of permafrost-affected peatlands thaw. The projected thaw would cause peatland greenhouse gas emissions equal to ∼1% of anthropogenic radiative forcing in this century. The main forcing is from methane emissions (0.7 to 3 Pg cumulative CH 4 -C) with smaller carbon dioxide forcing (1 to 2 Pg CO 2 -C) and minor nitrous oxide losses. We project that initial CO 2 -C losses reverse after ∼200 y, as warming strengthens peatland C-sinks. We project substantial, but highly uncertain, additional losses of peat into fluvial systems of 10 to 30 Pg C and 0.4 to 0.9 Pg N. The combined gaseous and fluvial peatland C loss estimated here adds 30 to 50% onto previous estimates of permafrost-thaw C losses, with southern permafrost regions being the most vulnerable. 
    more » « less
  2. Abstract. Northern peatlands have been a large C sink during the Holocene,but whether they will keep being a C sink under future climate change isuncertain. This study simulates the responses of northern peatlands tofuture climate until 2300 with a Peatland version Terrestrial EcosystemModel (PTEM). The simulations are driven with two sets of CMIP5 climate data(IPSL-CM5A-LR and bcc-csm1-1) under three warming scenarios (RCPs 2.6, 4.5 and8.5). Peatland area expansion, shrinkage, and C accumulation anddecomposition are modeled. In the 21st century, northern peatlands areprojected to be a C source of 1.2–13.3 Pg C under all climate scenariosexcept for RCP 2.6 of bcc-csm1-1 (a sink of 0.8 Pg C). During 2100–2300,northern peatlands under all scenarios are a C source under IPSL-CM5A-LRscenarios, being larger sources than bcc-csm1-1 scenarios (5.9–118.3 vs.0.7–87.6 Pg C). C sources are attributed to (1) the peatland water table depth(WTD) becoming deeper and permafrost thaw increasing decomposition rate; (2) net primary production (NPP) not increasing much as climate warms becausepeat drying suppresses net N mineralization; and (3) as WTD deepens,peatlands switching from moss–herbaceous dominated to moss–woody dominated,while woody plants require more N for productivity. Under IPSL-CM5A-LRscenarios, northern peatlands remain as a C sink until the pan-Arctic annualtemperature reaches −2.6 to −2.89 ∘C, while this threshold is −2.09to −2.35 ∘C under bcc-csm1-1 scenarios. This study predicts anorthern peatland sink-to-source shift in around 2050, earlier than previousestimates of after 2100, and emphasizes the vulnerability of northernpeatlands to climate change. 
    more » « less
  3. Abstract Large stocks of soil carbon (C) and nitrogen (N) in northern permafrost soils are vulnerable to remobilization under climate change. However, there are large uncertainties in present‐day greenhouse gas (GHG) budgets. We compare bottom‐up (data‐driven upscaling and process‐based models) and top‐down (atmospheric inversion models) budgets of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) as well as lateral fluxes of C and N across the region over 2000–2020. Bottom‐up approaches estimate higher land‐to‐atmosphere fluxes for all GHGs. Both bottom‐up and top‐down approaches show a sink of CO2in natural ecosystems (bottom‐up: −29 (−709, 455), top‐down: −587 (−862, −312) Tg CO2‐C yr−1) and sources of CH4(bottom‐up: 38 (22, 53), top‐down: 15 (11, 18) Tg CH4‐C yr−1) and N2O (bottom‐up: 0.7 (0.1, 1.3), top‐down: 0.09 (−0.19, 0.37) Tg N2O‐N yr−1). The combined global warming potential of all three gases (GWP‐100) cannot be distinguished from neutral. Over shorter timescales (GWP‐20), the region is a net GHG source because CH4dominates the total forcing. The net CO2sink in Boreal forests and wetlands is largely offset by fires and inland water CO2emissions as well as CH4emissions from wetlands and inland waters, with a smaller contribution from N2O emissions. Priorities for future research include the representation of inland waters in process‐based models and the compilation of process‐model ensembles for CH4and N2O. Discrepancies between bottom‐up and top‐down methods call for analyses of how prior flux ensembles impact inversion budgets, more and well‐distributed in situ GHG measurements and improved resolution in upscaling techniques. 
    more » « less
  4. Abstract Northern peatlands play an important role in the global C cycle due to their large C stocks and high potential methane (CH4) emissions. The CH4and CO2cycles of these systems are closely linked to hydrology, with water table level regulating the balance of oxic and anoxic conditions and the water content ofSphagnummosses that dominate primary production. Previous work has demonstrated that hyperspectral indices well‐suited to the detection of altered hydrology inSphagnumpeatlands are also highly correlated with GPP. However, little work has been done to extend these findings to CH4effluxes. In this study, we evaluate the utility of four hyperspectral indices, two reflecting vegetation photosynthetic function (chlorophyll index (CI); normalized difference vegetation index) and two reflecting water content (wetness index (WI); floating water band index), for detecting effects of altered water table, precipitation, and vegetation community on CH4and CO2exchange in two peatland mesocosm studies. We found that CI is a good predictor of net CO2exchange, and that it captured both drought and vegetation effects consistently across a broad range of vegetation treatments. Further, we demonstrate for the first time that WI combined with CI explained a significant percentage of CH4efflux (R2 = 0.32–0.57). Our results indicate that CI and WI together may be effective tools for detecting effects of altered hydrology and vegetation on northernSphagnum‐peatland CH4and CO2emissions, with implications for detecting and modeling changes in emissions of greenhouse gases at scales ranging from the ecosystem to the Earth system. 
    more » « less
  5. Abstract The northern permafrost region has been projected to shift from a net sink to a net source of carbon under global warming. However, estimates of the contemporary net greenhouse gas (GHG) balance and budgets of the permafrost region remain highly uncertain. Here, we construct the first comprehensive bottom‐up budgets of CO2, CH4, and N2O across the terrestrial permafrost region using databases of more than 1000 in situ flux measurements and a land cover‐based ecosystem flux upscaling approach for the period 2000–2020. Estimates indicate that the permafrost region emitted a mean annual flux of 12 (−606, 661) Tg CO2–C yr−1, 38 (22, 53) Tg CH4–C yr−1, and 0.67 (0.07, 1.3) Tg N2O–N yr−1to the atmosphere throughout the period. Thus, the region was a net source of CH4and N2O, while the CO2balance was near neutral within its large uncertainties. Undisturbed terrestrial ecosystems had a CO2sink of −340 (−836, 156) Tg CO2–C yr−1. Vertical emissions from fire disturbances and inland waters largely offset the sink in vegetated ecosystems. When including lateral fluxes for a complete GHG budget, the permafrost region was a net source of C and N, releasing 144 (−506, 826) Tg C yr−1and 3 (2, 5) Tg N yr−1. Large uncertainty ranges in these estimates point to a need for further expansion of monitoring networks, continued data synthesis efforts, and better integration of field observations, remote sensing data, and ecosystem models to constrain the contemporary net GHG budgets of the permafrost region and track their future trajectory. 
    more » « less