skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integrating the Thrifty Genotype and Evolutionary Mismatch Hypotheses to understand variation in cardiometabolic disease risk
Abstract More than 60 years ago, James Neel proposed the Thrifty Genotype Hypothesis to explain the widespread prevalence of type 2 diabetes in Western, industrial contexts. This hypothesis posits that variants linked to conservative energy usage and increased fat deposition would have been favored throughout human evolution due to the advantages they could provide during periods of resource limitation. However, in industrial environments, these variants instead produce an increased risk of obesity, metabolic syndrome, type 2 diabetes, and related health issues. This hypothesis has been popular and impactful, with thousands of citations, many ongoing debates, and several spin-off theories in biomedicine, evolutionary biology, and anthropology. However, despite great attention, the applicability and utility of the Thrifty Genotype Hypothesis (TGH) to modern human health remains, in our opinion, unresolved. To move research in this area forward, we first discuss the original formulation of the TGH and its critiques. Second, we trace the TGH to updated hypotheses that are currently at the forefront of the evolutionary medicine literature—namely, the Evolutionary Mismatch Hypothesis. Third, we lay out empirical predictions for updated hypotheses and evaluate them against the current literature. Finally, we discuss study designs that could be fruitful for filling current knowledge gaps; here, we focus on partnerships with subsistence-level groups undergoing lifestyle transitions, and we present data from an ongoing study with the Orang Asli of Malaysia to illustrate this point. Overall, we hope this synthesis will guide new empirical research aimed at understanding how the human evolutionary past interacts with our modern environments to influence cardiometabolic health.  more » « less
Award ID(s):
2142090 2142091 2142092
PAR ID:
10552976
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Evolution, Medicine, and Public Health
Volume:
12
Issue:
1
ISSN:
2050-6201
Format(s):
Medium: X Size: p. 214-226
Size(s):
p. 214-226
Sponsoring Org:
National Science Foundation
More Like this
  1. Noncommunicable diseases (NCDs) are on the rise worldwide. Obesity, cardiovascular disease, and type 2 diabetes are among a long list of “lifestyle” diseases that were rare throughout human history but are now common. The evolutionary mismatch hypothesis posits that humans evolved in environments that radically differ from those we currently experience; consequently, traits that were once advantageous may now be “mismatched” and disease causing. At the genetic level, this hypothesis predicts that loci with a history of selection will exhibit “genotype by environment” (GxE) interactions, with different health effects in “ancestral” versus “modern” environments. To identify such loci, we advocate for combining genomic tools in partnership with subsistence-level groups experiencing rapid lifestyle change. In these populations, comparisons of individuals falling on opposite extremes of the “matched” to “mismatched” spectrum are uniquely possible. More broadly, the work we propose will inform our understanding of environmental and genetic risk factors for NCDs across diverse ancestries and cultures. 
    more » « less
  2. ABSTRACT Species' distributions are changing around the planet as a result of global climate change. Most research has focused on shifts in mean climate conditions, leaving the effects of increased environmental variability comparatively underexplored. This paper proposes two new macroecological hypotheses—thevariability damping hypothesisand thevariability adaptation hypothesis—to understand how ecological dynamics and evolutionary history could influence biogeographic patterns being forced by contemporary large‐scale climate change across all major ecosystems. The variability damping hypothesis predicts that distributions of species living in deep water environments will be least affected by increasing climate‐driven temperature variability compared with species in nearshore, intertidal and terrestrial environments. The variability adaptation hypothesis predicts the opposite. Where available, we discuss how the existing evidence aligns with these hypotheses and propose ways in which they may be empirically tested. 
    more » « less
  3. Abstract Dramatic changes in cranial capacity have characterized human evolution. Important evolutionary hypotheses, such as the spatial packing hypothesis, assert that increases in relative brain size (encephalization) have caused alterations to the modern human skull, resulting in a suite of traits unique among extant primates, including a domed cranial vault, highly flexed cranial base, and retracted facial skeleton. Most prior studies have used fossil or comparative primate data to establish correlations between brain size and cranial form, but the mechanistic basis for how changes in brain size impact the overall shape of the skull resulting in these cranial traits remains obscure and has only rarely been investigated critically. We argue that understanding how changes in human skull morphology could have resulted from increased encephalization requires the direct testing of hypotheses relating to interaction of embryonic development of the bones of the skull and the brain. Fossil and comparative primate data have thoroughly described the patterns of association between brain size and skull morphology. Here we suggest complementing such existing datasets with experiments focused on mechanisms responsible for producing the observed patterns to more thoroughly understand the role of encephalization in shaping the modern human skull. 
    more » « less
  4. ABSTRACT Microbiome science has provided groundbreaking insights into human and animal health. Similarly, evolutionary medicine – the incorporation of eco‐evolutionary concepts into primarily human medical theory and practice – is increasingly recognised for its novel perspectives on modern diseases. Studies of host–microbe relationships have been expanded beyond humans to include a wide range of animal taxa, adding new facets to our understanding of animal ecology, evolution, behaviour, and health. In this review, we propose that a broader application of evolutionary medicine, combined with microbiome science, can provide valuable and innovative perspectives on animal care and conservation. First, we draw on classic ecological principles, such as alternative stable states, to propose an eco‐evolutionary framework for understanding variation in animal microbiomes and their role in animal health and wellbeing. With a focus on mammalian gut microbiomes, we apply this framework to populations of animals under human care, with particular relevance to the many animal species that suffer diseases linked to gut microbial dysfunction (e.g. gut distress and infection, autoimmune disorders, obesity). We discuss diet and microbial landscapes (i.e. the microbes in the animal's external environment), as two factors that are (i) proposed to represent evolutionary mismatches for captive animals, (ii) linked to gut microbiome structure and function, and (iii) potentially best understood from an evolutionary medicine perspective. Keeping within our evolutionary framework, we highlight the potential benefits – and pitfalls – of modern microbial therapies, such as pre‐ and probiotics, faecal microbiota transplants, and microbial rewilding. We discuss the limited, yet growing, empirical evidence for the use of microbial therapies to modulate animal gut microbiomes beneficially. Interspersed throughout, we propose 12 actionable steps, grounded in evolutionary medicine, that can be applied to practical animal care and management. We encourage that these actionable steps be paired with integration of eco‐evolutionary perspectives into our definitions of appropriate animal care standards. The evolutionary perspectives proposed herein may be best appreciated when applied to the broad diversity of species under human care, rather than when solely focused on humans. We urge animal care professionals, veterinarians, nutritionists, scientists, and others to collaborate on these efforts, allowing for simultaneous care of animal patients and the generation of valuable empirical data. 
    more » « less
  5. Prasad, Vinayaka R. (Ed.)
    ABSTRACT The ongoing coronavirus disease 2019 (COVID-19) pandemic demonstrates the threat posed by novel coronaviruses to human health. Coronaviruses share a highly conserved cell entry mechanism mediated by the spike protein, the sole product of the S gene. The structural dynamics by which the spike protein orchestrates infection illuminate how antibodies neutralize virions and how S mutations contribute to viral fitness. Here, we review the process by which spike engages its proteinaceous receptor, angiotensin converting enzyme 2 (ACE2), and how host proteases prime and subsequently enable efficient membrane fusion between virions and target cells. We highlight mutations common among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern and discuss implications for cell entry. Ultimately, we provide a model by which sarbecoviruses are activated for fusion competency and offer a framework for understanding the interplay between humoral immunity and the molecular evolution of the SARS-CoV-2 Spike. In particular, we emphasize the relevance of the Canyon Hypothesis (M. G. Rossmann, J Biol Chem 264:14587–14590, 1989) for understanding evolutionary trajectories of viral entry proteins during sustained intraspecies transmission of a novel viral pathogen. 
    more » « less