Abstract Adducts between OsO4and Lewis bases exert a role in important oxidation processes such as epoxidation and dihydroxylation. It has been shown that the attractive interaction driving the formation of these adducts is a σ‐hole bond involving the metal as the electrophilic species; the term Osme Bond (OmB) was proposed for designating it. Here some new adducts between OsO4and various bases have been characterized through single crystal x‐ray diffraction (XRD) and computational studies (density functional theory, DFT), confirming the existence of a robust correlation between σ‐hole interaction energy and deformation of the tetrahedral geometry of OsO4. Also, some adducts formed by RuO4with nucleophiles were investigated computationally.
more »
« less
Trigonal Bipyramidal or Square Planar? Density Functional Theory calculations of iron bis(dithiolene) N-heterocyclic carbene complexes
Density functional theory (DFT) calculations of 57 iron bis(dithiolene)-N-heterocyclic carbene adducts were conducted to determine what parameters predict, and possibly influence, the coordination of these aforementioned adducts. The parameters considered...
more »
« less
- Award ID(s):
- 2142874
- PAR ID:
- 10552985
- Publisher / Repository:
- Dalton Transactions
- Date Published:
- Journal Name:
- Dalton Transactions
- ISSN:
- 1477-9226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Two families of DNA glycosylases (YtkR2/AlkD, AlkZ/YcaQ) have been found to remove bulky and crosslinking DNA adducts produced by bacterial natural products. Whether DNA glycosylases eliminate other types of damage formed by structurally diverse antibiotics is unknown. Here, we identify four DNA glycosylases—TxnU2, TxnU4, LldU1 and LldU5—important for biosynthesis of the aromatic polyketide antibiotics trioxacarcin A (TXNA) and LL-D49194 (LLD), and show that the enzymes provide self-resistance to the producing strains by excising the intercalated guanine adducts of TXNA and LLD. These enzymes are highly specific for TXNA/LLD-DNA lesions and have no activity toward other, less stable alkylguanines as previously described for YtkR2/AlkD and AlkZ/YcaQ. Similarly, TXNA-DNA adducts are not excised by other alkylpurine DNA glycosylases. TxnU4 and LldU1 possess unique active site motifs that provide an explanation for their tight substrate specificity. Moreover, we show that abasic (AP) sites generated from TxnU4 excision of intercalated TXNA-DNA adducts are incised by AP endonuclease less efficiently than those formed by 7mG excision. This work characterizes a distinct class of DNA glycosylase acting on intercalated DNA adducts and furthers our understanding of specific DNA repair self-resistance activities within antibiotic producers of structurally diverse, highly functionalized DNA damaging agents.more » « less
-
Abstract The interaction of diiodine with quinuclidine (QN) and 4‐dimethylaminopyridine (DMAP) in solutions with 1 : 1 molar ratio of reactants at room temperature produced (in essentially quantitative yields) pure charge‐transfer QN⋅I2adducts and iodine(I) salt [DMAP‐I‐DMAP]I3, respectively. In comparison, the quantitative formation of pure iodine (I) salt [QN‐I‐QN]I5was observed for the room‐temperature reactions of QN with a 50 % excess of I2, and the charge‐transfer adducts of I2with DMAP (and other pyridines) were formed when reactions were carried out at low temperatures. Computational analysis related the switch from the formation of charge‐transfer adducts to iodine(I) complexes in these systems to the strength of the halogen bonding of diiodine to the N‐donor bases. It shows that while the halogen‐bonded adducts represent critical intermediates in the formation of iodine(I) complexes, exceedingly strong halogen bonding between diiodine and the base prevents any subsequent transformations. In other words, while halogen bonding usually facilitates electron and halogen transfer, the halogen‐bonded complexes may serve as “black holes” hindering any follow‐up processes if this intermolecular interaction is too strong.more » « less
-
We report an unusual series of discrete iodosyl- and iodoxyarene adducts of Co. The formation of these adducts was confirmed by a suite of techniques including single crystal X-ray diffraction. The reactivity of these adducts with O-atom acceptors and an H-atom donor has been investigated with particular focus on elucidating mechanistic details. Detailed kinetic analysis allows for discrimination between proposed oxo and adduct mediated mechanisms. In particular, these reactions have been interrogated by competition experiments with isotopically labelled mixtures which shows that all of the studied adducts display a large KIE. These studies suggest different mechanisms may be relevant depending on subtle substituent changes in the adduct complexes. Reactivity data are consistent with the involvement of a transient oxo complex in one case, while the two other systems appear to react with substrates directly as iodosyl- or iodoxyarene adducts. These results support that reactivity typically ascribed to metal-oxo complexes, such as O-atom transfer and C–H activation, can also be mediated by discrete transition metal iodosyl- or iodoxyarene adducts that are frequent intermediates in the generation of oxo complexes. The influence of additional Lewis acids such as Sc 3+ on the reactivity of these systems has also been investigated.more » « less
An official website of the United States government

