skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Continuous Gesture Control of a Robot Arm: Performance Is Robust to a Variety of Hand-to-Robot Maps
Objective: Despite advances in human-machine interface design, we lack the ability to give people precise and fast control over high degree of freedom (DOF) systems, like robotic limbs. Attempts to improve control often focus on the static map that links user input to device commands; hypothesizing that the user’s skill acquisition can be improved by finding an intuitive map. Here we investigate what map features affect skill acquisition. Methods: Each of our 36 participants used one of three maps that translated their 19-dimensional finger movement into the 5 robot joints and used the robot to pick up and move objects. The maps were each constructed to maximize a different control principle to reveal what features are most critical for user performance. 1) Principal Components Analysis to maximize the linear capture of finger variance, 2) our novel Egalitarian Principal Components Analysis to maximize the equality of variance captured by each component and 3) a Nonlinear Autoencoder to achieve both high variance capture and less biased variance allocation across latent dimensions Results: Despite large differences in the mapping structures there were no significant differences in group performance. Conclusion: Participants’ natural aptitude had a far greater effect on performance than the map. Significance: Robot-user interfaces are becoming increasingly common and require new designs to make them easier to operate. Here we show that optimizing the map may not be the appropriate target to improve operator skill. Therefore, further efforts should focus on other aspects of the robot-user-interface such as feedback or learning environment.  more » « less
Award ID(s):
2430423
PAR ID:
10553046
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE Xplore
Date Published:
Journal Name:
IEEE Transactions on Biomedical Engineering
Volume:
71
Issue:
3
ISSN:
0018-9294
Page Range / eLocation ID:
944 to 953
Subject(s) / Keyword(s):
Assistive robotic manipulator human-machine interface machine learning teleoperation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. One promising approach towards effective robot decision making in complex, long-horizon tasks is to sequence together parameterized skills. We consider a setting where a robot is initially equipped with (1) a library of parameterized skills, (2) an AI planner for sequencing together the skills given a goal, and (3) a very general prior distribution for selecting skill parameters. Once deployed, the robot should rapidly and autonomously learn to improve its performance by specializing its skill parameter selection policy to the particular objects, goals, and constraints in its environment. In this work, we focus on the active learning problem of choosing which skills to practice to maximize expected future task success. We propose that the robot should estimate the competence of each skill, extrapolate the competence (asking: “how much would the competence improve through practice?”), and situate the skill in the task distribution through competence- aware planning. This approach is implemented within a fully autonomous system where the robot repeatedly plans, practices, and learns without any environment resets. Through experiments in simulation, we find that our approach learns effective pa- rameter policies more sample-efficiently than several baselines. Experiments in the real-world demonstrate our approach’s ability to handle noise from perception and control and improve the robot’s ability to solve two long-horizon mobile-manipulation tasks after a few hours of autonomous practice. Project website: http://ees.csail.mit.edu 
    more » « less
  2. Perceived social agency-the perception of a robot as an autonomous and intelligent social other-is important for fostering meaningful and engaging human-robot interactions. While end-user programming (EUP) enables users to customize robot behavior, enhancing usability and acceptance, it can also potentially undermine the robot's perceived social agency. This study explores the trade-offs between user control over robot behavior and preserving the robot's perceived social agency, and how these factors jointly impact user experience. We conducted a between-subjects study (N = 57) where participants customized the robot's behavior using either a High-Granularity Interface with detailed block-based programming, a Low-Granularity Interface with broader input-form customizations, or no EUP at all. Results show that while both EUP interfaces improved alignment with user preferences, the Low-Granularity Interface better preserved the robot's perceived social agency and led to a more engaging interaction. These findings highlight the need to balance user control with perceived social agency, suggesting that moderate customization without excessive granularity may enhance the overall satisfaction and acceptance of robot products. 
    more » « less
  3. Despite the fact that robotic platforms can provide both consistent practice and objective assessments of users over the course of their training, there are relatively few instances where physical human–robot interaction has been significantly more effective than unassisted practice or human-mediated training. This article describes a hybrid shared control robot, which enhances task learning through kinesthetic feedback. The assistance assesses user actions using a task-specific evaluation criterion and selectively accepts or rejects them at each time instant. Through two human subject studies (total [Formula: see text]), we show that this hybrid approach of switching between full transparency and full rejection of user inputs leads to increased skill acquisition and short-term retention compared with unassisted practice. Moreover, we show that the shared control paradigm exhibits features previously shown to promote successful training. It avoids user passivity by only rejecting user actions and allowing failure at the task. It improves performance during assistance, providing meaningful task-specific feedback. It is sensitive to initial skill of the user and behaves as an “assist-as-needed” control scheme, adapting its engagement in real time based on the performance and needs of the user. Unlike other successful algorithms, it does not require explicit modulation of the level of impedance or error amplification during training and it is permissive to a range of strategies because of its evaluation criterion. We demonstrate that the proposed hybrid shared control paradigm with a task-based minimal intervention criterion significantly enhances task-specific training. 
    more » « less
  4. Abstract Skill acquisition theory conceptualizes second language (L2) learning in three stages (declarative, procedural, and automatic), yet competing theoretical models with fewer stages also exist, and the number of stages has never actually been tested. We tested the validity of the three-stage model by investigating the number and nature of learning stages in L2 skill acquisition. Seventy-three participants deliberately learned grammar and vocabulary of a miniature language through explicit-deductive instruction. They systematically practiced comprehending the language until their accuracy and speed of performance did not improve anymore. Participants received a battery of tests assessing individual differences in their declarative and procedural learning abilities. We first applied hidden Markov modeling to participants’ reaction time data (obtained from the language practice) to compare rival hypotheses on the number of stages in L2 skill acquisition. We then examined which cognitive variables predicted participants’ performances (accuracy and speed) in each stage. Our results indicated that participants indeed acquired L2 skills in three stages and that their performance correlated initially with declarative learning ability, but there was a tendency for procedural learning ability to take over in the later stages. Our findings provide the first formal evidence for the influential three-stage model of L2 skill acquisition. 
    more » « less
  5. null (Ed.)
    The recent development of Robot-Assisted Minimally Invasive Surgery (RAMIS) has brought much benefit to ease the performance of complex Minimally Invasive Surgery (MIS) tasks and lead to more clinical outcomes. Compared to direct master-slave manipulation, semi-autonomous control for the surgical robot can enhance the efficiency of the operation, particularly for repetitive tasks. However, operating in a highly dynamic in-vivo environment is complex. Supervisory control functions should be included to ensure flexibility and safety during the autonomous control phase. This paper presents a haptic rendering interface to enable supervised semi-autonomous control for a surgical robot. Bayesian optimization is used to tune user-specific parameters during the surgical training process. User studies were conducted on a customized simulator for validation. Detailed comparisons are made between with and without the supervised semi-autonomous control mode in terms of the number of clutching events, task completion time, master robot end-effector trajectory and average control speed of the slave robot. The effectiveness of the Bayesian optimization is also evaluated, demonstrating that the optimized parameters can significantly improve users' performance. Results indicate that the proposed control method can reduce the operator's workload and enhance operation efficiency. 
    more » « less