skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The impact of trait number and correlation on functional diversity metrics in real-world ecosystems
The use of trait-based approaches to understand ecological communities has increased in the past two decades because of their promise to preserve more information about community structure than taxonomic methods and their potential to connect community responses to subsequent effects of ecosystem functioning. Though trait-based approaches are a powerful tool for describing ecological communities, many important properties of commonly-used trait metrics remain unexamined. Previous work with simulated communities and trait distributions shows sensitivity of functional diversity measures to the number and correlation of traits used to calculate them, but these relationships have yet to be studied in actual plant communities with a realistic distribution of trait values, ecologically meaningful covariation of traits, and a realistic number of traits available for analysis. To address this gap, we used data from six grassland plant communities in Minnesota and New Mexico, USA to test how the number of traits and the correlation between traits used in the calculation of eight functional diversity indices impact the magnitude of functional diversity metrics in real plant communities. We found that most metrics were sensitive to the number of traits used to calculate them, but functional dispersion (FDis), kernel density estimation dispersion (KDE dispersion), and Rao’s quadratic entropy (Rao’s Q) maintained consistent rankings of communities across the range of trait numbers. Despite sensitivity of metrics to trait correlation, there was no consistent pattern between communities as to how metrics were affected by the correlation of traits used to calculate them. We recommend that future use of evenness metrics include sensitivity analyses to ensure results are robust to the number of traits used to calculate them. In addition, we recommend use of FDis, KDE dispersion, and Rao’s Q when ecologically applicable due to their ability to produce consistent rankings among communities across a range of the numbers of traits used to calculate them.  more » « less
Award ID(s):
1831944
PAR ID:
10553709
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Editor(s):
Boscutti, Francesco
Publisher / Repository:
Public Library of Science
Date Published:
Journal Name:
PLOS ONE
Volume:
19
Issue:
9
ISSN:
1932-6203
Page Range / eLocation ID:
e0306342
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Prieto Aguilar, Iván (Ed.)
    The use of trait-based approaches to understand ecological communities has increased in the past two decades because of their promise to preserve more information about community structure than taxonomic methods and their potential to connect community responses to subsequent effects of ecosystem functioning. Though trait-based approaches are a powerful tool for describing ecological communities, many important properties of commonly-used trait metrics remain unexamined. Previous work in studies that simulate communities and trait distributions show consistent sensitivity of functional richness and evenness measures to the number of traits used to calculate them, but these relationships have yet to be studied in actual plant communities with a realistic distribution of trait values, ecologically meaningful covariation of traits, and a realistic number of traits available for analysis. Therefore, we propose to test how the number of traits used and the correlation between traits used in the calculation of functional diversity indices impacts the magnitude of eight functional diversity metrics in real plant communities. We will use trait data from three grassland plant communities in the US to assess the generality of our findings across ecosystems and experiments. We will determine how eight functional diversity metrics (functional richness, functional evenness, functional divergence, functional dispersion, kernel density estimation (KDE) richness, KDE evenness, KDE dispersion, Rao’s Q) differ based on the number of traits used in the metric calculation and on the correlation of traits when holding the number of traits constant. Without a firm understanding of how a scientist’s choices impact these metric, it will be difficult to compare results among studies with different metric parametrization and thus, limit robust conclusions about functional composition of communities across systems. 
    more » « less
  2. Abstract AimsBryophytes can cover three quarters of the ground surface, play key ecological functions, and increase biodiversity in mesic high‐elevation conifer forests of the temperate zone. Forest gaps affect species coexistence (and ecosystem functions) as suggested by the gap and gap‐size partitioning hypotheses (GPH,GSPH). Here we test these hypotheses in the context of high‐elevation forest bryophyte communities and their functional attributes. Study SiteSpruce–fir forests on Whiteface Mountain, NY,USA. MethodsWe characterized canopy openness, microclimate, forest floor substrates, vascular vegetation cover, and moss layer (cover, common species, and functional attributes) in three canopy openness environments (gap, gap edge, forest canopy) across 20 gaps (fir waves) (n = 60); the functional attributes were based on 16 morphologic, reproductive, and ecological bryophyte plant functional traits (PFTs). We testedGPHandGSPHrelative to bryophyte community metrics (cover, composition), traits, and trait functional sensitivity (functional dispersion;FDis) using indicator species analysis, ordination, and regression. ResultsCanopy openness drove gradients in ground‐level temperature, substrate abundance and heterogeneity (beta diversity), and understory vascular vegetation cover. TheGPHwas consistent with (a) the abundance patterns of forest canopy indicator species (Dicranum fuscescens,Hypnum imponens, andTetraphis pellucida), and (b)FDisbased on threePFTs (growth form, fertility, and acidity), both increasing with canopy cover. We did not find support forGPHin the remaining species or traits, or forGSPHin general; gap width (12–44 m) was not related to environmental or bryophyte community gradients. ConclusionsThe observed lack of variation in most bryophyte metrics across canopy environments suggests high resistance of the bryophyte layer to natural canopy gaps in high‐elevation forests. However, responses of forest canopy indicator species suggest that canopy mortality, potentially increased by changing climate or insect pests, may cause declines in some forest canopy species and consequently in the functional diversity of bryophyte communities. 
    more » « less
  3. Jones, Julia A (Ed.)
    Abstract Studies of community assembly often explore the role of niche selection in limiting the diversity of functional traits (underdispersion) or increasing the diversity of functional traits (overdispersion) within local communities. While these patterns have primarily been explored with morphological functional traits related to environmental tolerances and resource acquisition, plant metabolomics may provide an additional functional dimension of community assembly to expand our understanding of how niche selection changes along environmental gradients. Here, we examine how the functional diversity of leaf secondary metabolites and traditional morphological plant traits changes along local environmental gradients in three temperate forest ecosystems across North America. Specifically, we asked whether co‐occurring tree species exhibit local‐scale over‐ or underdispersion of metabolomic and morphological traits, and whether differences in trait dispersion among local communities are associated with environmental gradients of soil resources and topography. Across tree species, we find that most metabolomic traits are not correlated with morphological traits, adding a unique dimension to functional trait space. Within forest plots, metabolomic traits tended to be overdispersed while morphological traits tended to be underdispersed. Additionally, local environmental gradients had site‐specific effects on metabolomic and morphological trait dispersion patterns. Taken together, these results show that different suites of traits can result in contrasting patterns of functional diversity along environmental gradients and suggest that multiple community assembly mechanisms operate simultaneously to structure functional diversity in temperate forest ecosystems. 
    more » « less
  4. Abstract Plant ecological strategies are shaped by numerous functional traits and their trade‐offs. Trait network analysis enables testing hypotheses for the shifting of trait correlation architecture across communities differing in climate and productivity.We built plant trait networks (PTNs) for 118 species within six communities across an aridity gradient, from forest to semi‐desert across the California Floristic Province, based on 34 leaf and wood functional traits, representing hydraulic and photosynthetic function, structure, economics and size. We developed hypotheses for the association of PTN parameters with climate and ecosystem properties, based on theory for the adaptation of species to low resource/stressful environments versus higher resource availability environments with greater potential niche differentiation. Thus, we hypothesized that across community PTNs, trait network connectivity (i.e., the degree that traits are intercorrelated) and network complexity (i.e., the number of trait modules, and the degree of trait integration among modules) would be lower for communities adapted to arid climates and higher for communities adapted to greater water availability, similarly to trends expected for phylogenetic diversity, functional richness and productivity. Further, within given PTNs, we hypothesized that traits would vary strongly in their network connectivity and that the traits most centrally connected within PTNs would be those with the least across‐species variation.Across communities from more arid to wetter climates, PTN architecture varied from less to more interconnected and complex, in association with functional richness, but PTN architecture was independent of phylogenetic diversity and ecosystem productivity. Within the community PTNs, traits with lower species variation were more interconnected.Synthesis. The responsiveness of PTN architecture to climate highlights how a wide range of traits contributes to physiological and ecological strategies with an architecture that varies among plant communities. Communities in more arid environments show a lower degree of phenotypic integration, consistent with lesser niche differentiation. Our study extends the usefulness of PTNs as an approach to quantify tradeoffs among multiple traits, providing connectivity and complexity parameters as tools that clarify plant environmental adaptation and patterns of trait associations that would influence species distributions, community assembly, and ecosystem resilience in response to climate change. 
    more » « less
  5. Abstract A central goal at the interface of ecology and conservation is understanding how the relationship between biodiversity and ecosystem function (B–EF) will shift with changing climate. Despite recent theoretical advances, studies which examine temporal variation in the functional traits and mechanisms (mass ratio effects and niche complementarity effects) that underpin the B–EF relationship are lacking.Here, we use 13 years of data on plant species composition, plant traits, local‐scale abiotic variables, above‐ground net primary productivity (ANPP), and climate from the alpine tundra of Colorado (USA) to investigate temporal dynamics in the B–EF relationship. To assess how changing climatic conditions may alter the B–EF relationship, we built structural equation models (SEMs) for 11 traits across 13 years and evaluated the power of different trait SEMs to predict ANPP, as well as the relative contributions of mass ratio effects (community‐weighted mean trait values; CWM), niche complementarity effects (functional dispersion; FDis) and local abiotic variables. Additionally, we coupled linear mixed effects models with Multimodel inference methods to assess how inclusion of trait–climate interactions might improve our ability to predict ANPP through time.In every year, at least one SEM exhibited good fit, explaining between 19.6% and 57.2% of the variation in ANPP. However, the identity of the trait which best explained ANPP changed depending on winter precipitation, with leaf area, plant height and foliar nitrogen isotope content (δ15N) SEMs performing best in high, middle and low precipitation years, respectively. Regardless of trait identity, CWMs exerted a stronger influence on ANPP than FDis and total biotic effects were always greater than total abiotic effects. Multimodel inference reinforced the results of SEM analysis, with the inclusion of climate–trait interactions marginally improving our ability to predict ANPP through time.Synthesis. Our results suggest that temporal variation in climatic conditions influences which traits, mechanisms and abiotic variables were most responsible for driving the B–EF relationship. Importantly, our findings suggest that future research should consider temporal variability in the B–EF relationship, particularly how the predictive power of individual functional traits and abiotic variables may fluctuate as conditions shift due to climate change. 
    more » « less