Abstract Stratospheric aerosol injection (SAI) has been shown in climate models to reduce some impacts of global warming in the Arctic, including the loss of sea ice, permafrost thaw, and reduction of Greenland Ice Sheet (GrIS) mass; SAI at high latitudes could preferentially target these impacts. In this study, we use the Community Earth System Model to simulate two Arctic‐focused SAI strategies, which inject at 60°N latitude each spring with injection rates adjusted to either maintain September Arctic sea ice at 2030 levels (“Arctic Low”) or restore it to 2010 levels (“Arctic High”). Both simulations maintain or restore September sea ice to within 10% of their respective targets, reduce permafrost thaw, and increase GrIS surface mass balance by reducing runoff. Arctic High reduces these impacts more effectively than a globally focused SAI strategy that injects similar quantities of SO2at lower latitudes. However, Arctic‐focused SAI is not merely a “reset button” for the Arctic climate, but brings about a novel climate state, including changes to the seasonal cycles of Northern Hemisphere temperature and sea ice and less high‐latitude carbon uptake relative to SSP2‐4.5. Additionally, while Arctic‐focused SAI produces the most cooling near the pole, its effects are not confined to the Arctic, including detectable cooling throughout most of the northern hemisphere for both simulations, increased mid‐latitude sulfur deposition, and a southward shift of the location of the Intertropical Convergence Zone. For these reasons, it would be incorrect to consider Arctic‐focused SAI as “local” geoengineering, even when compared to a globally focused strategy.
more »
« less
The Potential of Stratospheric Aerosol Injection to Reduce the Climatic Risks of Explosive Volcanic Eruptions
Abstract Sulfur‐rich volcanic eruptions happen sporadically. If Stratospheric Aerosol Injection (SAI) were to be deployed, it is likely that explosive volcanic eruptions would happen during such a deployment. Here we use an ensemble of Earth System Model simulations to show how changing the injection strategy post‐eruption could be used to reduce the climate risks of a large volcanic eruption; the risks are also modified even without any change to the strategy. For a medium‐size eruption (10 Tg‐SO2) comparable to the SAI injection rate, the volcanic‐induced cooling would be reduced if it occurs under SAI, especially if artificial sulfur dioxide injections were immediately suspended. Alternatively, suspending injection only in the eruption hemisphere and continuing injection in the opposite would reduce shifts in precipitation in the tropical belt and thus mitigate eruption‐induced drought. Finally, we show that for eruptions much larger than the SAI deployment, changes in SAI strategy would have minimal effect.
more »
« less
- Award ID(s):
- 1754740
- PAR ID:
- 10553747
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 8
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT This paper aims to better teach about submarine arc and backarc basin volcanic and hydrothermal activity using the ~1400 km long Mariana convergent margin as an example. Four US National Oceanographic and Atmospheric Administration (NOAA) expeditions (2004–2016) equipped with a remotely operated vehicle (ROV) have discovered and explored many of submarine volcanoes and associated hydrothermal fields and generated many short (~1 min long) videos about them. Some of these videos would be very useful for teaching about these processes if they were organized and context provided, which is done here. Eighteen short videos about nine sites generated by NOAA are presented and discussed here. These are organized into three categories: volcanic eruptions, magmatic degassing, and hydrothermal activity. Volcanic eruption videos include two about glassy pillow lavas erupted in 2013–2015 and a rare example of a submarine eruption. Four videos about magmatic degassing include an example of sulfur produced by disproportionation of magmatic sulfur dioxide associated with a submarine eruption, two rare examples of molten sulfur lakes, and liquid carbon dioxide venting. Four videos about hydrothermal activity are provided. Suggestions for how this material might be used in the classroom are also given.more » « less
-
Abstract Stratospheric aerosol injection (SAI) would involve the addition of sulfate aerosols in the stratosphere to reflect part of the incoming solar radiation, thereby cooling the climate. Studies trying to explore the impacts of SAI have often focused on idealized scenarios without explicitly introducing what we call ‘inconsistencies’ in a deployment. A concern often discussed is what would happen to the climate system after an abrupt termination of its deployment, whether inadvertent or deliberate. However, there is a much wider range of plausible inconsistencies in deployment than termination that should be evaluated to better understand associated risks. In this work, we simulate a few representative inconsistencies in a pre-existing SAI scenario: an abrupt termination, a decade-long gradual phase-out, and 1 year and 2 year temporary interruptions of deployment. After examining their climate impacts, we use these simulations to train an emulator, and use this to project global mean temperature response for a broader set of inconsistencies in deployment. Our work highlights the capacity of a finite set of explicitly simulated scenarios that include inconsistencies to inform an emulator that is capable of expanding the space of scenarios that one might want to explore far more quickly and efficiently.more » « less
-
Abstract Climate change is a prevalent threat, and it is unlikely that current mitigation efforts will be enough to avoid unwanted impacts. One potential option to reduce climate change impacts is the use of stratospheric aerosol injection (SAI). Even if SAI is ultimately deployed, it might be initiated only after some temperature target is exceeded. The consequences of such a delay are assessed herein. This study compares two cases, with the same target global mean temperature of ∼1.5° C above preindustrial, but start dates of 2035 or a ‘delayed’ start in 2045. We make use of simulations in the Community Earth System Model version 2 with the Whole Atmosphere Coupled Chemistry Model version 6 (CESM2-WACCM6), using SAI under the SSP2-4.5 emissions pathway. We find that delaying the start of deployment (relative to the target temperature) necessitates lower net radiative forcing (−30%) and thus larger sulfur dioxide injection rates (+20%), even after surface temperatures converge, to compensate for the extra energy absorbed by the Earth system. Southern hemisphere ozone is higher from 2035 to 2050 in the delayed start scenario, but converges to the same value later in the century. However, many of the surface climate differences between the 2035 and 2045 start simulations appear to be small during the 10–25 years following the delayed SAI start, although longer simulations would be needed to assess any longer-term impacts in this model. In addition, irreversibilities and tipping points that might be triggered during the period of increased warming may not be adequately represented in the model but could change this conclusion in the real world.more » « less
-
This paper aims to better teach about submarine arc and backarc basin volcanic and hydrothermal activity using the ~1400 km long Mariana convergent margin as an example. Four US National Oceanographic and Atmospheric Administration (NOAA) expeditions (2004–2016) equipped with a remotely operated vehicle (ROV) have discovered and explored many of submarine volcanoes and associated hydrothermal fields and generated many short (~1 min long) videos about them. Some of these videos would be very useful for teaching about these processes if they were organized and context provided, which is done here. Eighteen short videos about nine sites generated by NOAA are presented and discussed here. These are organized into three categories: volcanic eruptions, magmatic degassing, and hydrothermal activity. Volcanic eruption videos include two about glassy pillow lavas erupted in 2013–2015 and a rare example of a submarine eruption. Four videos about magmatic degassing include an example of sulfur produced by disproportionation of magmatic sulfur dioxide associated with a submarine eruption, two rare examples of molten sulfur lakes, and liquid carbon dioxide venting. Four videos about hydrothermal activity are provided. Suggestions for how this material might be used in the classroom are also given.more » « less
An official website of the United States government

