skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal replacement of coal with wind and battery energy storage
Abstract Electric utilities are considering replacing their coal power plants with renewables and energy storage to reduce emissions. However, they have also expressed concerns about operational changes and system reliability brought by these replacements. Utilities in remote rural areas face more challenges as they also face energy insecurity while having limited interconnections to wider systems and reliance on imported fuels. Therefore, it is critical for remote utilities to understand different coal replacement approaches and their impacts on system expansion, operation and energy security. In this paper, we define and investigate three approaches to replace coal using wind and batteries: (1) replacing exact coal generation, (2) replacing at least coal generation, and (3) replacing total energy provided by coal. We develop a case study inspired by the small remote grid in Fairbanks, Alaska, which has a single limited interconnection with the grid south of it. We utilize a power system expansion and economic dispatch model that co-optimizes the capacities of wind and batteries required for each approach and the hourly dispatch of energy and reserves for one year. We further analyze the operational cost variability under fixed and fluctuating fuel prices. We find that replacing the exact coal generation requires minimal operational changes, but also significantly more wind and battery capacities. In contrast, replacing total energy provided by coal induces more cycling in other resources, challenging grids with limited flexibility-providing resources. However, replacing total energy provided by coal allows more generation variability in response to fuel price fluctuations, enhancing energy security.  more » « less
Award ID(s):
1845093
PAR ID:
10554027
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research: Energy
Volume:
1
Issue:
4
ISSN:
2753-3751
Format(s):
Medium: X Size: Article No. 045009
Size(s):
Article No. 045009
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The widespread presence of contingent generation, when coupled with the resulting volatility of the chronological net-load (i.e., the difference between stochastic generation and uncertain load) in today's modern electricity markets, engender the significant operational risks of an uncertain sufficiency of flexible energy capacity. In this article, we address several operational flexibility concerns that originate from the increase in generation variability captured within a security-constrained unit commitment (SCUC) formulation in smart grids. To quantitatively assess the power grid operational flexibility capacity, we first introduce two reference operation strategies based on a two-stage robust SCUC, one through a fixed and the other via an adjustable uncertainty set, for which the state-of-the-art techniques may not be always feasible, efficient, and practical. To address these concerns and to account for the effects of the uncertainty cost resulting from dispatch limitations of flexible resources, a new framework centered on the adjustable penetration of stochastic generation is proposed. Our hypothesis is that if the SCUC is scheduled with an appropriate dispatch level of stochastic generation, the system uncertainty cost will decrease, and subsequently, the system's ability to accommodate additional uncertainty will improve. Numerical simulations on a modified IEEE 73-bus test system verify the efficiency of the suggested assessment techniques. 
    more » « less
  2. Micro wind power systems may serve as a source of low-carbon electricity that can be integrated into cities as opposed to utility-scale wind turbines. However, the electricity generation performance of wind turbines of all capacities is highly dependent on conditions at an installation site, which can vary widely even within the same municipal region. We assess the life cycle greenhouse gas emissions (LCGHGE) and energy payback time of a novel microturbine of 2.4-kW capacity with location-specific environmental data. Potential electricity generation was modeled in the areas surrounding two US cities with ambitious decarbonization efforts and abundant wind energy resources in different climates: Austin, Texas and Minneapolis, Minnesota. The effects of system lifetime and hub height on the potential electricity generation were investigated, which identified trade-offs in higher electricity generation for taller turbines yet higher LCGHGE from greater amounts of materials needed. The LCGHGE of micro wind modeled for Austin and Minneapolis range from 53 to 293 g CO2eq/kWh, which is higher than utility-scale wind energy but still lower than fossil fuel sources of electricity. This study highlights the variability in the LCGHGE and energy payback time of micro wind power across locations, demonstrating the value of geospatial analyses for life cycle climate change impact estimates. 
    more » « less
  3. Green hydrogen, produced using renewables through electrolysis, can be used to reduce emissions in the hard-to-abate industrial sector. Efficient production and large-scale deployment require storage to mitigate electrolyzer degradation and ensure stable hydrogen supply. This paper explores the impacts and trade-offs of battery and hydrogen storage in off-grid wind-to-hydrogen systems, considering degradation of batteries and electrolyzers. Utilizing an optimization model, we examine system performance and costs over a wide range of storage capacities and wind profiles. Our results show that batteries smooth short-term fluctuations and minimize electrolyzer degradation but can experience significant degradation resulting from frequent charge/discharge cycles. Conversely, hydrogen storage provides long-term energy buffering, essential for sustained hydrogen production, but can increase electrolyzer cycling and degradation. Combining battery and hydrogen storage enhances system reliability, reduces component degradation, and reduces operational costs. This highlights the importance of strategic storage investments to improve the performance and costs of green hydrogen systems. 
    more » « less
  4. We explore sustainable electricity system development pathways in South America’s MERCOSUR sub-region under a range of techno-economic, infrastructural, and policy forces. The MERCOSUR sub-region includes Argentina, Brazil, Chile, Uruguay, and Paraguay, which represent key electricity generation, consumption, and trade dynamics on the continent. We use a power system planning model to co-optimize investment and operations of generation, storage, and transmission facilities out to 2050. Our results show that, under business-as-usual conditions, wind and solar contribute more than half of new generation capacity by 2050, though this requires substantial expansion of natural gas-based capacity. While new hydropower appears to be less cost-competitive, the existing high capacity of hydropower provides critically important flexibility to integrate the wind and solar and to avoid further reliance on more expensive or polluting resources (e.g., natural gas). Over 90% emission cut by 2050 could be facilitated mostly by enhanced integration (predominantly after 2040) of wind, solar, and battery storage with 11%–28% additional cost, whereas enhanced expansion of hydropower reduces the cost of low-carbon transition, suggesting trade-off opportunities between saving costs and environment in selecting the clean energy resources. Achieving high emission reduction goals will also require enhanced sub-regional electricity trade, which could be mostly facilitated by existing interconnection capacities. 
    more » « less
  5. null (Ed.)
    Despite the increasing level of renewable power generation in power grids, fossil fuel power plants still have a significant role in producing carbon emissions. The integration of carbon capturing and storing systems to the conventional power plants can significantly reduce the spread of carbon emissions. In this paper, the economic-emission dispatch of combined renewable and coal power plants equipped with carbon capture systems is addressed in a multi-objective optimization framework. The power systems flexibility is enhanced by hydropower plants, pumped hydro storage, and demand response program. The wind generation and load consumption uncertainties are modeled using stochastic programming. The DC power flow model is implemented on a modified IEEE 24-bus test system. Solving the problem resulted in an optimal Pareto frontier, while the fuzzy decision-making method found the best solution. The sensitivity of the objective functions concerning the generation-side is also investigated. 
    more » « less