This content will become publicly available on July 1, 2025
Nanometer-scale crystallographic structure and orientation of a NbTiN/AlN/NbTiN device stack grown via plasma-assisted molecular beam epitaxy on c-plane sapphire are reported. Structure, orientation, interface roughness, and thickness are investigated using correlative four-dimensional scanning transmission electron microscopy and atom probe tomography (APT). This work finds NbTiN that is rock salt structured and highly oriented toward ⟨111⟩ with rotations about that axis corresponding to step edges in the c-plane sapphire with a myriad of twin boundaries that exhibit nanoscale spacing. The wurtzite (0001) AlN film grown on (111) NbTiN exhibits nm-scale changes in the thickness resulting in pinhole shorts across the barrier junction. The NbTiN overlayer grown on AlN is polycrystalline, randomly oriented, and highly strained. APT was also used to determine local changes in chemistry within the superconductor and dielectric. Deviation from both intended cation:cation and cation:anion ratios are observed. The results from conventional and nanoscale metrology highlight the challenges of engineering nitride trilayer heterostructures in material systems with complicated and understudied phase space.
more » « less- Award ID(s):
- 2125899
- PAR ID:
- 10554163
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- Journal of Vacuum Science & Technology A
- Volume:
- 42
- Issue:
- 4
- ISSN:
- 0734-2101
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Epitaxial growth of κ-phase Ga 2 O 3 thin films is investigated on c-plane sapphire, GaN- and AlN-on-sapphire, and (100) oriented yttria stabilized zirconia (YSZ) substrates via metalorganic chemical vapor deposition. The structural and surface morphological properties are investigated by comprehensive material characterization. Phase pure κ-Ga 2 O 3 films are successfully grown on GaN-, AlN-on-sapphire, and YSZ substrates through a systematical tuning of growth parameters including the precursor molar flow rates, chamber pressure, and growth temperature, whereas the growth on c-sapphire substrates leads to a mixture of β- and κ-polymorphs of Ga 2 O 3 under the investigated growth conditions. The influence of the crystalline structure, surface morphology, and roughness of κ-Ga 2 O 3 films grown on different substrates are investigated as a function of precursor flow rate. High-resolution scanning transmission electron microscopy imaging of κ-Ga 2 O 3 films reveals abrupt interfaces between the epitaxial film and the sapphire, GaN, and YSZ substrates. The growth of single crystal orthorhombic κ-Ga 2 O 3 films is confirmed by analyzing the scanning transmission electron microscopy nanodiffraction pattern. The chemical composition, surface stoichiometry, and bandgap energies of κ-Ga 2 O 3 thin films grown on different substrates are studied by high-resolution x-ray photoelectron spectroscopy (XPS) measurements. The type-II (staggered) band alignments at three interfaces between κ-Ga 2 O 3 and c-sapphire, AlN, and YSZ substrates are determined by XPS, with an exception of κ-Ga 2 O 3 /GaN interface, which shows type-I (straddling) band alignment.more » « less
-
Crystalline zinc blende GaAs has been grown on a trigonal c-plane sapphire substrate by molecular beam epitaxy. The initial stage of GaAs thin film growth has been investigated extensively in this paper. When grown on c-plane sapphire, it takes (111) crystal orientation with twinning as a major problem. Direct growth of GaAs on sapphire results in three-dimensional GaAs islands, almost 50% twin volume, and a weak in-plane correlation with the substrate. Introducing a thin AlAs nucleation layer results in complete wetting of the substrate, better in-plane correlation with the substrate, and reduced twinning to 16%. Further, we investigated the effect of growth temperature, pregrowth sapphire substrate surface treatment, and in-situ annealing on the quality of the GaAs epilayer. We have been able to reduce the twin volume below 2% and an X-ray diffraction rocking curve line width to 223 arcsec. A good quality GaAs on sapphire can result in the implementation of microwave photonic functionality on a photonic chip.more » « less
-
The growth of monoclinic phase‐pure gallium oxide (β‐Ga2O3) layers by metal–organic chemical vapor deposition on c‐plane sapphire and aluminum nitride (AlN) templates using silicon‐oxygen bonding (SiO
x ) as a phase stabilizer is reported. The β‐Ga2O3layers are grown using triethylgallium, oxygen, and silane for gallium, oxygen, and silicon precursors, respectively, at 700 °C, with and without silane flow in the process. The samples grown on sapphire with SiOx phase stabilization show a notable change from samples without phase stabilization in the roughness and resistivity, from 16.2 to 4.2 nm and from 85.82 to 135.64 Ω cm, respectively. X‐ray diffraction reveals a pure‐monoclinic phase, and Raman spatial mapping exhibits higher tensile strain in the films in the presence of SiOx . The β‐Ga2O3layers grown on an AlN template, using the same processes as for sapphire, show an excellent epitaxial relationship between β‐Ga2O3and AlN and have a significant change in β‐Ga2O3surface morphology. -
Abstract A multistep deposition technique is developed to produce highly oriented diamond films by hot filament chemical vapor deposition (HFCVD) on Si (111) substrates. The orientation is produced by use of a thin, 5–20 nm, Ni interlayer. Annealing studies demonstrate diffusion of Ni into Si to form nickel silicides with crystal structure depending on temperature. The HFCVD diamond film with Ni interlayer results in reduced non-diamond carbon, low surface roughness, high diamond crystal quality, and increased texturing relative to growth on bare silicon wafers. X-ray diffraction results show that the diamond film grown with 10 nm Ni interlayer yielded 92.5% of the diamond grains oriented along the (110) crystal planes with ~ 2.5 µm thickness and large average grain size ~ 1.45 µm based on scanning electron microscopy. Texture is also observed to develop for ~ 300 nm thick diamond films with ~ 89.0% of the grains oriented along the (110) crystal plane direction. These results are significantly better than diamond grown on Si (111) without Ni layer with the same HFCVD conditions. The oriented growth of diamond film on Ni interlayers is explained by a proposed model wherein the nano-diamond seeds becoming oriented relative to the β1-Ni3Si that forms during the diamond nucleation period. The model also explains the silicidation and diamond growth processes.
Article Highlights High quality diamond film with minimum surface roughness and ~93% oriented grains along (110) crystallographic direction is grown on Si substrate using a thin 5 to 20 nm nickel layer.
A detailed report on the formation of different phases of nickel silicide, its stability with different temperature, and its role for diamond film texturing at HFCVD growth condition is presented.
A diamond growth model on Si substrate with Ni interlayer to grow high quality-oriented diamond film is established.
-
AlN thin films are enabling significant progress in modern optoelectronics, power electronics, and microelectromechanical systems. The various AlN growth methods and conditions lead to different film microstructures. In this report, phonon scattering mechanisms that impact the cross-plane (κz; along the c-axis) and in-plane (κr; parallel to the c-plane) thermal conductivities of AlN thin films prepared by various synthesis techniques are investigated. In contrast to bulk single crystal AlN with an isotropic thermal conductivity of ∼330 W/m K, a strong anisotropy in the thermal conductivity is observed in the thin films. The κz shows a strong film thickness dependence due to phonon-boundary scattering. Electron microscopy reveals the presence of grain boundaries and dislocations that limit the κr. For instance, oriented films prepared by reactive sputtering possess lateral crystalline grain sizes ranging from 20 to 40 nm that significantly lower the κr to ∼30 W/m K. Simulation results suggest that the self-heating in AlN film bulk acoustic resonators can significantly impact the power handling capability of RF filters. A device employing an oriented film as the active piezoelectric layer shows an ∼2.5× higher device peak temperature as compared to a device based on an epitaxial film.