Self-consistent evaluation of proximity and inverse proximity effects with pair-breaking in diffusive superconducting–normal metal junctions
- Award ID(s):
- 2114825
- PAR ID:
- 10554855
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review B
- Volume:
- 110
- Issue:
- 18
- ISSN:
- 2469-9950; PRBMDO
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In proximity-driven sensing, interactions between a probe and an analyte produce a detectable signal by causing a change in distance of two probe components or signaling moieties. By interfacing such systems with DNA-based nanostructures, platforms that are highly sensitive, specific, and programmable can be designed. In this Perspective, we delineate the advantages of using DNA building blocks in proximity-driven nanosensors and provide an overview of recent progress in the field, from sensors that rapidly detect pesticides in food to probes that identify rare cancer cells in blood. We also discuss current challenges and identify key areas that need further development.more » « less
-
We initiate the systematic study of QMA algorithms in the setting of property testing, to which we refer as QMA proofs of proximity (QMAPs). These are quantum query algorithms that receive explicit access to a sublinear-size untrusted proof and are required to accept inputs having a property Π and reject inputs that are ε -far from Π , while only probing a minuscule portion of their input.We investigate the complexity landscape of this model, showing that QMAPs can be e x p o n e n t i a l l y stronger than both classical proofs of proximity and quantum testers. To this end, we extend the methodology of Blais, Brody, and Matulef (Computational Complexity, 2012) to prove quantum property testing lower bounds via reductions from communication complexity. This also resolves a question raised in 2013 by Montanaro and de Wolf (cf. Theory of Computing, 2016).Our algorithmic results include a purpose an algorithmic framework that enables quantum speedups for testing an expressive class of properties, namely, those that are succinctly d e c o m p o s a b l e . A consequence of this framework is a QMA algorithm to verify the Parity of an n -bit string with O ( n 2 / 3 ) queries and proof length. We also propose a QMA algorithm for testing graph bipartitneness, a property that lies outside of this family, for which there is a quantum speedup.more » « less
-
Probing single molecules in their nanoenvironment can reveal site-specific phenomena that would be obscured by ensemble-averaging experiments on macroscopic populations of molecules. Particularly in the past decade, major technological breakthroughs in scanning probe microscopy (SPM) have led to unprecedented spatial resolution and versatility and enabled the interrogation of molecular conformation, bond order, molecular orbitals, charge states, spins, phonons, and intermolecular interactions. On page 452 of this issue, Peng et al. ( 1 ) use SPM to directly measure the triplet lifetime of an individual pentacene molecule and demonstrate its dependence on interactions with nearby oxygen molecules with atomic precision. In addition to allowing the local tuning and probing of spin-spin interactions between molecules, this study represents a notable advance in the single-molecule regime and provides insights into many macroscopic behaviors and related applications in catalysis, energy-conversion materials, or biological systems.more » « less
An official website of the United States government
