skip to main content


Title: Forest habitats and plant communities strongly predicts Megachilidae bee biodiversity

Megachilidae is one of the United States’ most diverse bee families, with 667 described species in 19 genera. Unlike other bee families, which are primarily ground nesters, most megachilid bees require biotic cavities for nesting (i.e., wood, pithy stems,etc.). For this group, the availability of woody-plant species may be as important as nectar/pollen resources in maintaining populations. We studied Megachilidae biodiversity in the continental United States. We confirmed that the highest species richness of Megachilidae was in the southwestern United States. We examined the relationship between species richness and climate, land cover, tree species richness, and flowering plant diversity. When examining environmental predictors across the conterminous United States, we found that forested habitats, but not tree diversity, strongly predicted Megachilidae richness. Additionally, Megachilidae richness was highest in areas with high temperature and low precipitation, however this was not linearly correlated and strongly positively correlated with flowering plant diversity. Our research suggests that the availability of nesting substrate (forested habitats), and not only flowering plants, is particularly important for these cavity-nesting species. Since trees and forested areas are particularly susceptible to climate change, including effects of drought, fire, and infestations, nesting substrates could become a potential limiting resource for Megachilidae populations.

 
more » « less
Award ID(s):
2216927
PAR ID:
10554871
Author(s) / Creator(s):
; ;
Publisher / Repository:
PeerJ
Date Published:
Journal Name:
PeerJ
Volume:
11
ISSN:
2167-8359
Page Range / eLocation ID:
e16145
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Compared to non‐urban environments, cities host ecological communities with altered taxonomic diversity and functional trait composition. However, we know little about how these urban changes take shape over time. Using historical bee (Apoidea: Anthophila) museum specimens supplemented with online repositories and researcher collections, we investigated whether bee species richness tracked urban and human population growth over the past 118 years. We also determined which species were no longer collected, whether those species shared certain traits, and if collector behavior changed over time. We focused on Wake County, North Carolina, United States where human population size has increased over 16 times over the last century along with the urban area within its largest city, Raleigh, which has increased over four times. We estimated bee species richness with occupancy models, and rarefaction and extrapolation curves to account for imperfect detection and sample coverage. To determine if bee traits correlated with when species were collected, we compiled information on native status, nesting habits, diet breadth, and sociality. We used non‐metric multidimensional scaling to determine if individual collectors contributed different bee assemblages over time. In total, there were 328 species collected in Wake County. We found that although bee species richness varied, there was no clear trend in bee species richness over time. However, recent collections (since 2003) were missing 195 species, and there was a shift in trait composition, particularly lost species were below‐ground nesters. The top collectors in the dataset differed in how often they collected bee species, but this was not consistent between historic and contemporary time periods; some contemporary collectors grouped closer together than others, potentially due to focusing on urban habitats. Use of historical collections and complimentary analyses can fill knowledge gaps to help understand temporal patterns of species richness in taxonomic groups that may not have planned long‐term data.

     
    more » « less
  2. Abstract

    Recent declines in wild bee populations have led to increases in conservation actions and monitoring of bee communities. Pan traps are a commonly used sampling method for monitoring bee populations due to their efficiency and low cost. However, potential biases inherent in different sampling techniques may result in misleading characterizations of bee communities across space and time.

    In this paper, we examined how bee communities sampled using pan traps and aerial nets changed seasonally, and if they were affected by the availability of floral resources.

    We found strong seasonal changes in the abundance, but not the richness, of bees captured in pan traps. Notably, we captured the fewest bees during weeks in spring when most flowering plant species were in bloom, suggesting that floral resource availability influences pan trap captures. We also compared patterns of bee abundance in pan traps to those captured by aerial netting. Bee richness in pans and nets was positively correlated, but relative abundances in pan and net samples were dominated by different bee genera. Furthermore, most genera decreased in pans with increasing floral richness, but patterns were mixed for nets. When using presence/absence data, rather than abundance, community composition was more similar between netted and pan‐trapped bee communities and changed less substantially across the floral richness gradient.

    Overall, these differences led to sampling substantially different bee community compositions in pan traps versus nets, especially when using abundance‐based methods to characterize the bee community. By examining multiple years of intensive seasonal sampling of plant and bee communities, we document potential pitfalls with methods commonly used to sample bee communities.

    We suggest that pan trapping and aerial netting provide similar estimates of bee species richness and community composition when using presence/absence data, but that practitioners should interpret pan‐trapped bee abundance data with caution especially when comparing bee communities between sites where plant communities may differ.

     
    more » « less
  3. Abstract

    Despite widespread concerns about the anthropogenic drivers of global pollinator declines, little information is available about the impacts of land management practices on wild bees outside of agricultural systems, including in forests managed intensively for wood production. We assessed changes in wild bee communities with time since harvest in 60 intensively managed Douglas‐fir (Pseudotsuga menziesii) stands across a gradient in stand ages spanning a typical harvest rotation. We measured bee abundance, species richness, and alpha and beta diversity, as well as habitat characteristics (i.e., floral resources, nesting substrates, understory vegetation, and early seral forest in the surrounding landscape) during the spring and summer of 2018 and 2019. We found that bee abundance and species richness declined rapidly with stand age, decreasing by 61% and 48%, respectively, for every 5 years since timber harvest. Asymptotic estimates of Shannon and Simpson diversity were highest in stands 6–10 years post‐harvest and lowest after the forest canopy had closed, ~11 years post‐harvest. Bee communities in older stands were nested subsets of bee communities found in younger stands, indicating that changes were due to species loss rather than turnover as the stands aged. Bee abundance—but not species richness—was positively associated with floral resource density, and neither metric was associated with floral richness. The amount of early seral forest in the surrounding landscape seemed to enhance bee species richness in older, closed‐canopy stands, but otherwise had little effect. Changes in the relative abundance of bee species did not relate to bee functional characteristics such as sociality, diet breadth, or nesting substrate. Our study demonstrates that Douglas‐fir plantations develop diverse communities of wild bees shortly after harvest, but those communities erode rapidly over time as forest canopies close. Therefore, stand‐scale management activities that prolong the precanopy closure period and enhance floral resources during the initial stage of stand regeneration will provide the greatest opportunity to enhance bee diversity in landscapes dominated by intensively managed conifer forests.

     
    more » « less
  4. Abstract Context

    There is concern that urbanization threatens bees, a diverse group of economic importance. The impact of urbanization on bees is likely mediated by their phenotypic traits.

    Objectives

    We examine how urban cover and resource availability at local and landscape scales influences both species taxonomic and functional diversity in bees.

    Methods

    We used a combination of aerial netting and pan traps across six sampling periods to collect wild bees in 18 urban gardens spanning more than 125 km of the California central coast. We identified 3537 specimens to genus and, when possible, to species to obtain species richness and abundance at each site. For each species we measured a suite of bee traits, including body size, sociality, nesting location, nesting behavior, pollen-carrying structure, parasitism, and lecty.

    Results

    We found that increased garden size was positively associated with bee species richness and abundance. Somewhat counterintuitively, we found that urban cover surrounding gardens (2 km) was positively associated with bee species richness. Urban cover was also associated with the prevalence of certain bee traits, such as bees that excavate nests over those who rent, and bees with non-corbiculate structures. We suggest that urban habitats such as gardens can host a high number of bee species, but urbanization selects for species with specific traits.

    Conclusions

    These findings illustrate that local and landscape features both influence bee abundance, species richness, and the frequency of specific traits. We highlight the importance of trait-based approaches for assessing biodiversity in urban landscapes, and suggest conceptualizing urbanization as a process of habitat change rather than habitat loss.

     
    more » « less
  5. Abstract

    Bees require distinct foraging and nesting resources to occur in close proximity. However, spatial and temporal patterns in the availability and quantity of these resources can be affected by disturbances like wildfire. The potential for spatial or temporal separation of foraging and nesting resources is of particular concern for solitary wood‐cavity‐nesting bees as they are central‐place, short‐distance foragers once they have established their nest. Often the importance of nesting resources for bees have been tested by sampling foraging bees as a proxy, and nesting bees have rarely been studied in a community context, particularly postdisturbance. We tested how wood‐cavity‐nesting bee species richness, nesting success, and nesting and floral resources varied across gradients of wildfire severity and time‐since‐burn. We sampled nesting bees via nesting boxes within four wildfires in southwest Montana, USA, using a space‐for‐time substitution chronosequence approach spanning 3–25 years postburn and including an unburned control. We found that bee nesting success and species richness declined with increasing time postburn, with a complete lack of successful bee nesting in unburned areas. Nesting and floral resources were highly variable across both burn severity and time‐since‐burn, yet generally did not have strong effects on nesting success. Our results together suggest that burned areas may provide important habitat for wood‐cavity‐nesting bees in this system. Given ongoing fire regime shifts as well as other threats facing wild bee communities, this work helps provide essential information necessary for the management and conservation of wood‐cavity‐nesting bees.

     
    more » « less