skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data Farming the Parameters of Simulation-Optimization Solvers
The performance of a simulation-optimization algorithm, a.k.a. a solver, depends on its parameter settings. Much of the research to date has focused on how a solver’s parameters affect its convergence and other asymptotic behavior. While these results are important for providing a theoretical understanding of a solver, they can be of limited utility to a user who must set up and run the solver on a particular problem. When running a solver in practice, good finite-time performance is paramount. In this article, we explore the relationship between a solver’s parameter settings and its finite-time performance by adopting a data farming approach. The approach involves conducting and analyzing the outputs of a designed experiment wherein the factors are the solver’s parameters and the responses are assorted performance metrics measuring the solver’s speed and solution quality over time. We demonstrate this approach with a study of the ASTRO-DF solver when solving a stochastic activity network problem and an inventory control problem. Through these examples, we show that how some of the solver’s parameters are set greatly affects its ability to achieve rapid, reliable progress and gain insights into the solver’s inner workings. We discuss the implications of using this framework for tuning solver parameters, as well as for addressing related questions of interest to solver specialists and generalists.  more » « less
Award ID(s):
2226347
PAR ID:
10555119
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Modeling and Computer Simulation
Volume:
34
Issue:
4
ISSN:
1049-3301
Page Range / eLocation ID:
1 to 29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Harper, A; Luis, M; Monks, T; Mustafee, N (Ed.)
    Running stochastic simulation-optimization solvers on a testbed of diverse problem instances allows users to evaluate their empirical performance, but obtaining meaningful results requires executing many replications. When problem instances feature realistic simulators, the associated computational costs are often prohibitively expensive. Cheaper, synthetic problem instances generally fail to preserve essential aspects of simulators, and a solver’s performance on them may not be representative of its performance in practice. We propose a novel class of problem instance designed to imitate important features of simulation test problems and generate representative solver performance data at relatively low computational cost. We augment existing models predominantly used for emulation, namely, Gaussian processes, generalized lambda models, and kernel regression models, with an approximation of a Gaussian copula process. This adaptation facilitates efficient coordinated sampling across solutions (via common random numbers) and across solvers (via the sharing of sample-path functions) while keeping the number of user-specified parameters manageable. 
    more » « less
  2. Algorithms often have tunable parameters that impact performance metrics such as runtime and solution quality. For many algorithms used in practice, no parameter settings admit meaningful worst-case bounds, so the parameters are made available for the user to tune. Alternatively, parameters may be tuned implicitly within the proof of a worst-case approximation ratio or runtime bound. Worst-case instances, however, may be rare or nonexistent in practice. A growing body of research has demonstrated that a data-driven approach to parameter tuning can lead to significant improvements in performance. This approach uses atraining setof problem instances sampled from an unknown, application-specific distribution and returns a parameter setting with strong average performance on the training set. We provide techniques for derivinggeneralization guaranteesthat bound the difference between the algorithm’s average performance over the training set and its expected performance on the unknown distribution. Our results apply no matter how the parameters are tuned, be it via an automated or manual approach. The challenge is that for many types of algorithms, performance is a volatile function of the parameters: slightly perturbing the parameters can cause a large change in behavior. Prior research [e.g.,12,16,20,62] has proved generalization bounds by employing case-by-case analyses of greedy algorithms, clustering algorithms, integer programming algorithms, and selling mechanisms. We streamline these analyses with a general theorem that applies whenever an algorithm’s performance is a piecewise-constant, piecewise-linear, or—more generally—piecewise-structuredfunction of its parameters. Our results, which are tight up to logarithmic factors in the worst case, also imply novel bounds for configuring dynamic programming algorithms from computational biology. 
    more » « less
  3. Problem solvers vary their approaches to solving problems depending on the context of the problem, the requirements of the solution, and the ways in which the problems and material to solve the problem are represented, or representations. Representations take many forms (i.e. tables, graphs, figures, images, formulas, visualizations, and other similar contexts) and are used to communicate information to a problem solver. Engagement with certain representations varies between problem solvers and can influence design and solution quality. A problem solver’s evaluation of representations and the reasons for using a representation can be considered factors in problem-solving heuristics. These factors describe unique problem-solving behaviors that can help understand problem solvers. These behaviors may lead to important relationships between a problem solver’s decisions and their ability to solve a problem and overall quality of the solution. Therefore, we pose the following research question: How do factors of problem-solving heuristics describe the unique behaviors of engineering students as they solve multiple problems? To answer this question, we interviewed 16 undergraduate engineering students studying civil engineering. The interviews consisted of a problem-solving portion that was followed immediately by a semi-structured retrospective interview with probing questions created based on the real time monitoring of the problem-solving interview using eye tracking techniques. The problem-solving portion consisted of solving three problems related to the concept of headloss in fluid flow through pipes. Each of the three problems included the same four representations that were used by the students as approaches to solving the problem. The representations are common ways to present the concept of headloss in pipe flow and included two formulas, a set of tables, and a graph. This paper presents a set of common reasons for why decisions were made during the problem-solving process that help to understand more about the problem-solving behavior of engineering students. 
    more » « less
  4. Algorithms often have tunable parameters that impact performance metrics such as runtime and solution quality. For many algorithms used in practice, no parameter settings admit meaningful worst-case bounds, so the parameters are made available for the user to tune. Alternatively, parameters may be tuned implicitly within the proof of a worst-case guarantee. Worst-case instances, however, may be rare or nonexistent in practice. A growing body of research has demonstrated that data-driven algorithm design can lead to significant improvements in performance. This approach uses a training set of problem instances sampled from an unknown, application-specific distribution and returns a parameter setting with strong average performance on the training set. 
    more » « less
  5. null (Ed.)
    Portfolio-based algorithm selection has seen tremendous practical success over the past two decades. This algorithm configuration procedure works by first selecting a portfolio of diverse algorithm parameter settings, and then, on a given problem instance, using an algorithm selector to choose a parameter setting from the portfolio with strong predicted performance. Oftentimes, both the portfolio and the algorithm selector are chosen using a training set of typical problem instances from the application domain at hand. In this paper, we provide the first provable guarantees for portfolio-based algorithm selection. We analyze how large the training set should be to ensure that the resulting algorithm selector's average performance over the training set is close to its future (expected) performance. This involves analyzing three key reasons why these two quantities may diverge: 1) the learning-theoretic complexity of the algorithm selector, 2) the size of the portfolio, and 3) the learning-theoretic complexity of the algorithm's performance as a function of its parameters. We introduce an end-to-end learning-theoretic analysis of the portfolio construction and algorithm selection together. We prove that if the portfolio is large, overfitting is inevitable, even with an extremely simple algorithm selector. With experiments, we illustrate a tradeoff exposed by our theoretical analysis: as we increase the portfolio size, we can hope to include a well-suited parameter setting for every possible problem instance, but it becomes impossible to avoid overfitting. 
    more » « less