skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum energy density of cosmic strings with nonzero radius
Zero-point fluctuations in the background of a cosmic string provide an opportunity to study the effects of topology in quantum field theory. We use a scattering theory approach to compute quantum corrections to the energy density of a cosmic string, using the “ballpoint pen” and “flowerpot” models to allow for a nonzero string radius. For computational efficiency, we consider a massless field in 2+1 dimensions. We show how to implement precise and unambiguous renormalization conditions in the presence of a deficit angle, and make use of Kontorovich-Lebedev techniques to rewrite the sum over angular momentum channels as an integral on the imaginary axis.  more » « less
Award ID(s):
2209582
PAR ID:
10555501
Author(s) / Creator(s):
; ;
Publisher / Repository:
Physical Review D
Date Published:
Journal Name:
Physical Review D
Volume:
110
Issue:
10
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The precision cosmological model describing the origin and expansion history of the universe, with observed structure seeded at the inflationary cosmic horizon, demands completion in the ultraviolet and in the infrared. The dynamics of the cosmic horizon also suggests an associated entropy, again requiring a microphysical theory. Recent years have seen enormous progress in understanding the structure of de Sitter space and inflation in string theory, and of cosmological observables captured by quantum field theory and solvable deformations thereof. The resulting models admit ongoing observational tests through measurements of the cosmic microwave background and large-scale structure, as well as through analyses of theoretical consistency by means of thought experiments. This paper, prepared for the TF01 and TF09 conveners of the Snowmass 2021 process, provides a synopsis of this important area, focusing on ongoing developments and opportunities. Note: Contribution to Snowmass 2021 
    more » « less
  2. A bstract We draw attention to a class of generalized global symmetries, which we call “Chern-Weil global symmetries,” that arise ubiquitously in gauge theories. The Noether currents of these Chern-Weil global symmetries are given by wedge products of gauge field strengths, such as F 2 ∧ H 3 and tr( $$ {F}_2^2 $$ F 2 2 ), and their conservation follows from Bianchi identities. As a result, they are not easy to break. However, it is widely believed that exact global symmetries are not allowed in a consistent theory of quantum gravity. As a result, any Chern-Weil global symmetry in a low-energy effective field theory must be either broken or gauged when the theory is coupled to gravity. In this paper, we explore the processes by which Chern-Weil symmetries may be broken or gauged in effective field theory and string theory. We will see that many familiar phenomena in string theory, such as axions, Chern-Simons terms, worldvolume degrees of freedom, and branes ending on or dissolving in other branes, can be interpreted as consequences of the absence of Chern-Weil symmetries in quantum gravity, suggesting that they might be general features of quantum gravity. We further discuss implications of breaking and gauging Chern-Weil symmetries for particle phenomenology and for boundary CFTs of AdS bulk theories. Chern-Weil global symmetries thus offer a unified framework for understanding many familiar aspects of quantum field theory and quantum gravity. 
    more » « less
  3. A<sc>bstract</sc> In this note, we resolve an apparent obstacle to string/M theory realizations of dS observer patch holography, finding a new role for averaging in quantum gravity. The solvable$$ T\overline{T} $$ T T ¯ (+Λ2) deformation recently provided a detailed microstate count of thedS3cosmic horizon, reproducing the refined Gibbons-Hawking entropy computed by Anninos et al. along with the correct radial bulk geometry. On the gravity side, the deformation brings in the boundary to just outside a black hole horizon, where it is indistinguishable from the dS cosmic horizon, enabling a continuous passage to a bounded patch of dS. In string/M theory, the relationship between AdS/CFT and dS involves uplifts that change the internal topology, e.g. replacing an internal sphere$$ \mathbbm{S} $$ S with an internal hyperbolic spaceℍ(and incorporating varying warp and conformal factors). We connect these two approaches, noting that the differences in the extra dimensions between AdS black hole and dS solutions are washed out by internal averaging in the presence of a timelike boundary skirting the horizon. This helps to motivate a detailed investigation into the possibility of such timelike boundaries in (A)dS solutions of string/M theory, and we take initial steps toward suitable generalizations of Liouville walls as one approach. 
    more » « less
  4. The purpose of this White Paper is to review recent progress towards elucidating and evaluating string amplitudes, relating them to quantum field theory amplitudes, applying their predictions to string dualities, exploring their connection with gravitational physics, and deepening our under- standing of their mathematical structure. We also present a selection of targets for future research. 
    more » « less
  5. A<sc>bstract</sc> We use insights from string field theory to analyze and cure the divergences in the cylinder diagram in minimal string theory with both boundaries lying on a ZZ brane. We focus on theories with worldsheet matter consisting of the (2, p) minimal model plus Liouville theory, with total central charge 26, together with the usualbc-ghosts. The string field theory procedure gives a finite, purely imaginary normalization constant for non-perturbative effects in minimal string theory, or doubly non-perturbative effects in JT gravity. We find precise agreement with the prediction from the dual double-scaled one-matrix integral. We also make a few remarks about the extension of this result to the more general (p′, p) minimal string. 
    more » « less