Increasing empirical evidence has been showing that, over the last decades, the frequency of daily heavy precipitation has risen in some regions of the United States (U.S.); less evidence has instead been presented at subdaily resolutions. In this study, we describe the challenges and opportunities associated with the detection of trends in subdaily heavy P in the U.S. using Version 2 of the Hourly Precipitation Data (HPD) from the National Climatic Data Center (NCDC). This dataset comprises records from 1897 gages which we found to be affected by several issues preventing their use in trend studies, including long periods with missing observations, changes of instruments, and different signal resolutions (largely, 0.254 and 2.54 mm). Despite this, after proper checks, we were able to identify 370 gages with ≥40 years of statistically homogenous data in 1950-2010 that cover the U.S. with a good density. To improve the ability to detect trends, we designed a framework that quantifies the degree to which the observed over-threshold series above a given empirical q-quantile are consistent with stationary count time series with the same marginal distribution and serial correlation structure as the observations. We also applied the false discovery rate test to account for spatial dependence and multiplicity of the local tests. Analyses were performed for the signals aggregated at Δt = 1, 2, 3, 6, 12, and 24 h and for q = 0.95, 0.97, and 0.99, finding that most gages exhibit increasing trends across all Δt’s and that their statistical significance increases with Δt and decreases with q, but only for Δt ≥ 2 h. This might indicate that the physical generating mechanisms of precipitation have changed in a way that leads to larger accumulations over durations >1 h but similar intensities within 1 h. An alternative possible explanation for these outcomes is instead that the coarse signal resolution (2.54 mm) reduces the power of the test for trend detection as Δt decreases. Investigating these issues will be the subject of our immediate future work.
more »
« less
A Comprehensive Assessment of Trends in Subdaily Heavy Precipitation in the U.S.?
Theoretical arguments and modeling experiments suggest that heavy precipitation is expected to intensify in a warmer climate. These projections have been supported by observational evidence at the daily scale, whereas the lack of long-term subdaily records has limited the ability to conduct analyses at shorter durations. In this study, we address this research gap using the Hourly Precipitation Data (HPD) from the National Climatic Data Center (NCDC). Due to the presence of relatively large periods with missing observations, we first implement a procedure to reconstruct probable missing zeros using the Analysis of Record Calibration (AORC) hourly gridded product. After the reconstruction, we identify 1404 gages with more than 75% (median of 94%) of complete records in the period 1979-2019 that cover the continental U.S. with good density. We then perform trend test analyses on the hourly observations where, at each gage, (1) independent events are identified, (2) peak-over- threshold series above the 90th, 95th, and 99th quantiles are extracted, and (3) trend tests are performed on the annual frequency and mean intensity of the POT series. After accounting for field significance, we find that hourly heavy precipitation exhibits statistically significant trends that are increasing for the frequency (+1% - +2% every year) but decreasing for the intensity (- 0.4 mm/h - -1.8 mm/h every 10 years). This is true in most of the country, except for some areas in the Southwest and South regions. Analyses repeated with the signals aggregated at 2, 3, 6, 12, and 24 hours lead to similar patterns, although a lower number of statistically significant trends is found as the duration increases. Overall, the statistical evidence of the trends is higher when focusing on the frequency rather than the intensity of heavy precipitation, and it is reduced when considering higher quantiles likely because of the lower test power. The results of this study are useful for the validation of climate and atmospheric models and the incorporation of nonstationarities due to global warming in intensity-duration- frequency curves of extreme precipitation used for infrastructure design.
more »
« less
- PAR ID:
- 10555594
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The magnitude and frequency of heavy precipitation are expected to increase under warming temperatures caused by climate change. These trends have emerged in observational records but with much larger evidence on a daily rather than a subdaily scale. Here, we quantify long‐term changes in heavy precipitation frequency in the United States using hourly observations in 1949–2020 from 332 gauges. We demonstrate that, when analyzed collectively, the frequencies of heavy precipitation at multiple durations from hourly to daily exhibit an increase that cannot be explained by natural climate variability. Upward trends are significant at ∼20%–40% of the gauges throughout the country except for the coastal western and southeastern regions, with higher percentages for longer durations. We also show that the frequency of hourly heavy precipitation has mainly grown after ∼2000, thus explaining the limited evidence of trends at the subdaily scale reported in past studies.more » « less
-
null (Ed.)Abstract Light–moderate precipitation is projected to decrease whereas heavy precipitation may increase under greenhouse gas (GHG)-induced global warming, while atmospheric convective available potential energy (CAPE) over most of the globe and convective inhibition (CIN) over land are projected to increase. The underlying processes for these precipitation changes are not fully understood. Here, projected precipitation changes are analyzed using 3-hourly data from simulations by a fully coupled climate model, and their link to the CAPE and CIN changes is examined. The model approximately captures the spatial patterns in the mean precipitation frequencies and the significant correlation between the precipitation frequencies or intensity and CAPE over most of the globe or CIN over tropical oceans seen in reanalysis, and it projects decreased light–moderate precipitation (0.01 < P ≤ 1 mm h −1 ) but increased heavy precipitation ( P > 1 mm h −1 ) in a warmer climate. Results show that most of the light–moderate precipitation events occur under low-CAPE and/or low-CIN conditions, which are projected to decrease greatly in a warmer climate as increased temperature and humidity shift many of such cases into moderate–high CAPE or CIN cases. This results in large decreases in the light–moderate precipitation events. In contrast, increases in heavy precipitation result primarily from its increased probability under given CAPE and CIN, with a secondary contribution from the CAPE/CIN frequency changes. The increased probability for heavy precipitation partly results from a shift of the precipitation histogram toward higher intensity that could result from a uniform percentage increase in precipitation intensity due to increased water vapor in a warmer climate.more » « less
-
The spatiotemporal mean rain rate (MR) can be characterized by the rain frequency (RF) and the conditional rain rate (CR). We computed these parameters for each season using the TMPA 3-hourly, 0.25° gridded data for the 1998–2017 period at a quasi-global scale, 50°N~50°S. For the global long-term average, MR, RF, and CR are 2.83 mm/d, 10.55%, and 25.05 mm/d, respectively. The seasonal time series of global mean RF and CR show significant decreasing and increasing trends, respectively, while MR depicts only a small but significant trend. The seasonal anomaly of RF decreased by 5.29% and CR increased 13.07 mm/d over the study period, while MR only slightly decreased by −0.029 mm/day. The spatiotemporal patterns in MR, RF, and CR suggest that although there is no prominent trend in the total precipitation amount, the frequency of rainfall events becomes smaller and the average intensity of a single event becomes stronger. Based on the co-variability of RF and CR, the paper optimally classifies the precipitation over land and ocean into four categories using K-means clustering. The terrestrial clusters are consistent with the dry and wet climatology, while categories over the ocean indicate high RF and medium CR in the Inter Tropical Convergence Zone (ITCZ) region; low RF with low CR in oceanic dry zones; and low RF and high CR in storm track areas. Empirical Orthogonal Function (EOF) analysis was then performed, and these results indicated that the major pattern of MR is characterized by an El Niño-Southern Oscillation (ENSO) signal while RF and CR variations are dominated by their trends.more » « less
-
Comparison of Local, Regional, and Scaling Models for Rainfall Intensity–Duration–Frequency AnalysisAbstract Intensity–duration–frequency (IDF) analyses of rainfall extremes provide critical information to mitigate, manage, and adapt to urban flooding. The accuracy and uncertainty of IDF analyses depend on the availability of historical rainfall records, which are more accessible at daily resolution and, quite often, are very sparse in developing countries. In this work, we quantify performances of different IDF models as a function of the number of available high-resolution (Nτ) and daily (N24h) rain gauges. For this aim, we apply a cross-validation framework that is based on Monte Carlo bootstrapping experiments on records of 223 high-resolution gauges in central Arizona. We test five IDF models based on (two) local, (one) regional, and (two) scaling frequency analyses of annual rainfall maxima from 30-min to 24-h durations with the generalized extreme value (GEV) distribution. All models exhibit similar performances in simulating observed quantiles associated with return periods up to 30 years. When Nτ > 10, local and regional models have the best accuracy; bias correcting the GEV shape parameter for record length is recommended to estimate quantiles for large return periods. The uncertainty of all models, evaluated via Monte Carlo experiments, is very large when Nτ ≤ 5; however, if N24h ≥ 10 additional daily gauges are available, the uncertainty is greatly reduced and accuracy is increased by applying simple scaling models, which infer estimates on subdaily rainfall statistics from information at daily scale. For all models, performances depend on the ability to capture the elevation control on their parameters. Although our work is site specific, its results provide insights to conduct future IDF analyses, especially in regions with sparse data.more » « less
An official website of the United States government

