This work contributes to nonlocal vector calculus as an indispensable mathematical tool for the study of nonlocal models that arises in a variety of applications. We define the nonlocal half-ball gradient, divergence and curl operators with general kernel functions (integrable or fractional type with finite or infinite supports) and study the associated nonlocal vector identities. We study the nonlocal function space on bounded domains associated with zero Dirichlet boundary conditions and the half-ball gradient operator and show it is a separable Hilbert space with smooth functions dense in it. A major result is the nonlocal Poincaré inequality, based on which a few applications are discussed, and these include applications to nonlocal convection–diffusion, nonlocal correspondence model of linear elasticity and nonlocal Helmholtz decomposition on bounded domains.
more »
« less
A nonconformal nonlocal approach to calculating statistical spread in fatigue indicator parameters for polycrystals
This articles intent is to convey that a weighted nonconformal nonlocal average is computationally tractable and has potential to predict a more accurate statistical spread in FIP values than other mesh independent nonlocal approaches considered.
more »
« less
- Award ID(s):
- 1934753
- PAR ID:
- 10555601
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Fatigue & Fracture of Engineering Materials & Structures
- Volume:
- 46
- Issue:
- 12
- ISSN:
- 8756-758X
- Page Range / eLocation ID:
- 4801 to 4806
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nonlocal gradient operators are prototypical nonlocal differential operators that are very important in the studies of nonlocal models. One of the simplest variational settings for such studies is the nonlocal Dirichlet energies wherein the energy densities are quadratic in the nonlocal gradients. There have been earlier studies to illuminate the link between the coercivity of the Dirichlet energies and the interaction strengths of radially symmetric kernels that constitute nonlocal gradient operators in the form of integral operators. In this work we adopt a different perspective and focus on nonlocal gradient operators with a non-spherical interaction neighborhood. We show that the truncation of the spherical interaction neighborhood to a half sphere helps making nonlocal gradient operators well-defined and the associated nonlocal Dirichlet energies coercive. These become possible, unlike the case with full spherical neighborhoods, without any extra assumption on the strengths of the kernels near the origin. We then present some applications of the nonlocal gradient operators with non-spherical interaction neighborhoods. These include nonlocal linear models in mechanics such as nonlocal isotropic linear elasticity and nonlocal Stokes equations, and a nonlocal extension of the Helmholtz decomposition.more » « less
-
Nonlocal vector calculus, which is based on the nonlocal forms of gradient, divergence, and Laplace operators in multiple dimensions, has shown promising applications in fields such as hydrology, mechanics, and image processing. In this work, we study the analytical underpinnings of these operators. We rigorously treat compositions of nonlocal operators, prove nonlocal vector calculus identities, and connect weighted and unweighted variational frameworks. We combine these results to obtain a weighted fractional Helmholtz decomposition which is valid for sufficiently smooth vector fields. Our approach identifies the function spaces in which the stated identities and decompositions hold, providing a rigorous foundation to the nonlocal vector calculus identities that can serve as tools for nonlocal modeling in higher dimensions.more » « less
-
Nonlocal neural networks [25] have been proposed and shown to be effective in several computer vision tasks, where the nonlocal operations can directly capture long-range dependencies in the feature space. In this paper, we study the nature of diffusion and damping effect of nonlocal networks by doing spectrum analysis on the weight matrices of the well-trained networks, and then propose a new formulation of the nonlocal block. The new block not only learns the nonlocal interactions but also has stable dynamics, thus allowing deeper nonlocal structures. Moreover, we interpret our formulation from the general nonlocal modeling perspective, where we make connections between the proposed nonlocal network and other nonlocal models, such as nonlocal diffusion process and Markov jump process.more » « less
-
Abstract We present a theoretical and computational framework based on fractional calculus for the analysis of the nonlocal static response of cylindrical shell panels. The differ-integral nature of fractional derivatives allows an efficient and accurate methodology to account for the effect of long-range (nonlocal) interactions in curved structures. More specifically, the use of frame-invariant fractional-order kinematic relations enables a physically, mathematically, and thermodynamically consistent formulation to model the nonlocal elastic interactions. To evaluate the response of these nonlocal shells under practical scenarios involving generalized loads and boundary conditions, the fractional-finite element method (f-FEM) is extended to incorporate shell elements based on the first-order shear-deformable displacement theory. Finally, numerical studies are performed exploring both the linear and the geometrically nonlinear static response of nonlocal cylindrical shell panels. This study is intended to provide a general foundation to investigate the nonlocal behavior of curved structures by means of fractional-order models.more » « less
An official website of the United States government

