Orb-weaver spiders produce upwards of seven different types of silk, each with unique material properties. We focus on the adhesive within orb-weaving spider webs, aggregate glue silk. These droplets are composed of three main components: water, glycoproteins, and a wide range of low molecular mass compounds (LMMCs). These LMMCs are known to play a crucial role in maintaining the material properties of the glycoproteins, aid in water absorption from the environment, and increase surface adhesion. Orb-weavers within the Cyrtarachninae subfamily are moth specialists and have evolved glue droplets with novel material properties. This study investigated the biochemical composition and diversity of the LMMCs present in the aggregate glue of eight moth-specialist species and compared them with five generalist orb-weavers using nuclear magnetic resonance (NMR) spectroscopy. We hypothesized that the novel drying ability of moth-specialist glue was accompanied by novel LMMCs and lower overall percentages by silk weight of LMMCs. We measured no difference in LMMC weight by the type of prey specialization, but observed novel compositions in the glue of all eight moth-catching species. Further, we quantified the presence of a previously reported but unidentified compound that appears in the glue of all moth specialists. These silks can provide insight into the functions of bioadhesives and inform our own synthetic adhesives.
more »
« less
The evolution of anti-bat sensory illusions in moths
Experimental bat-moth battles reveal that sonar sensing is a driving force in the repeated evolution of silk moth hindwings.
more »
« less
- Award ID(s):
- 1612862
- PAR ID:
- 10555704
- Publisher / Repository:
- Science Advances
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 4
- Issue:
- 7
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Automeris moths are a morphologically diverse group with 135 described species that have a geographic range that spans from the New World temperate zone to the Neotropics. Many Automeris have elaborate hindwing eyespots that are thought to deter or disrupt the attack of potential predators, allowing the moth time to escape. The Io moth (Automeris io), known for its striking eyespots, is a well-studied species within the genus and is an emerging model system to study the evolution of deimatism. Existing research on the eyespot pattern development will be augmented by genomic resources that allow experimental manipulation of this emerging model. Here, we present a high-quality, PacBio HiFi genome assembly for Io moth to aid existing research on the molecular development of eyespots and future research on other deimatic traits. This 490 Mb assembly is highly contiguous (N50 = 15.78 mbs) and complete (benchmarking universal single-copy orthologs = 98.4%). Additionally, we were able to recover orthologs of genes previously identified as being involved in wing pattern formation and movement.more » « less
-
Abstract The moth fly,Clogmia albipunctata, is a common synanthropic insect with a worldwide range that lives in nearly any area with moist, decaying organic matter. These habitats comprise both smooth, slippery substrates (e.g., bathroom drains) and heterogeneous, bumpy ground (e.g., soil in plant pots). By using terrain of varying levels of roughness, we focus specifically on how substrate roughness at the approximate size scale of the organism affects kinematics and coordination in adult moth flies. Finally, we compare and contrast our characterizations of locomotion inC. albipunctatawith previous work of insect walking in naturalistic environments.more » « less
-
Spiders use various combinations of silks, adhesives, and behaviors to ensnare and trap prey. A common but difficult to catch prey in most spider habitats are moths. They easily escape typical orb-webs because their bodies are covered in sacrificial scales that flake off when in contact with the web’s adhesives. This defense is defeated by spiders of the sub-family of Cyrtarachninae, moth-catching specialists who combine changes in orb-web structure, predatory behavior, and chemistry of the aggregate glue placed in those webs. The most extreme changes in web structure are shown by bolas spiders, who create a solitary capture strand containing only one or two glue droplets at the end of a single thread. They prey on male moths by releasing pheromones to draw them within range of their bolas, which they flick to ensnare the moth. We used a high-speed video camera to capture the behavior of the bolas spider Mastophora hutchinsoni. We calculated the kinematics of spiders and moths in the wild to model the physical and mechanical properties of the bolas during prey capture, the behavior of the moth, and how these factors lead to successful prey capture. We created a numerical model to explain the mechanical behavior of the bolas silk during prey capture. Our kinematic analysis shows that the material properties of the aggregate glue bolas of M. hutchinsoni are distinct from that of the other previously analyzed moth-specialist, Cyrtarachne akirai. The spring-like behavior of the M. hutchinsoni bolas suggests it spins a thicker liquid.more » « less
-
Elaborate traits evolve via intense selective pressure, overpowering ecological constraints. Hindwing tails that thwart bat attack have repeatedly originated in moon moths (Saturniidae), with longer tails having greater anti-predator effect. Here, we take a macroevolutionary approach to evaluate the evolutionary balance between predation pressure and possible limiting environmental factors on tail elongation. To trace the evolution of tail length across time and space, we inferred a time-calibrated phylogeny of the entirely tailed moth group (Actias + Argema) and performed ancestral state reconstruction and biogeographical analyses. We generated metrics of predation via estimates of bat abundance from nearly 200 custom-built species distribution models and environmental metrics via estimates of bioclimatic variables associated with individual moth observations. To access community science data, we developed a novel method for measuring wing lengths from un-scaled photos. Integrating these data into phylogenetically informed mixed models, we find a positive association between bat predation pressure and moth tail length and body size, and a negative association between environmental factors and these morphological traits. Regions with more insectivorous bats and more consistent temperatures tend to host longer-tailed moths. Our study provides insight into tradeoffs between biotic selective pressures and abiotic constraints that shape elaborate traits across the tree of life.more » « less
An official website of the United States government

