The 5drare Earth iridate is an intriguing material with exhibiting exotic electronic and magnetic phases due to spin‐orbit coupled states. Ternary iridium oxidesLn3IrO7contain an unusual Ir5+(5d4) system, which remain a subject of active research. Fabricating epitaxialLn3IrO7films is challenging due to substrate compatibility, but it offers a valuable platform to explore electronic and magnetic behaviors under reduced dimensionality and substrate interactions, revealing novel phenomena based on Ir5+(5d4). In this regard, this demonstrates that Pr3IrO7with its highly anisotropic orthorhombic structure can be epitaxially grown on a cubic (111)‐oriented yttrium‐stabilized ZrO2(YSZ) substrate. Pr3IrO7film exhibits six epitaxial domains, where the (220) and (202) planes aligning epitaxially to YSZ (111) with the threefold symmetry. This diverse domain configuration in Pr3IrO7film leads to unique magnetic properties, exhibiting spin‐glass‐like behavior. Pr3IrO7thin film offers a platform for exploring unconventional magnetic states, and their successful heteroepitaxy on YSZ substrates opens new avenues for discovering novel physical phenomena.
more »
« less
Surveying the scope of aromatic decarboxylations catalyzed by prenylated-flavin dependent enzymes
H/D exchange between substrate and solvent D2O provides a sensitive test for substrate activation in prenylated-flavin dependent enzymes. We show that a remarkably diverse range of molecules can be activated by one enzyme, ferulic acid decarboxylase.
more »
« less
- Award ID(s):
- 2203729
- PAR ID:
- 10555711
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Faraday Discussions
- Volume:
- 252
- ISSN:
- 1359-6640
- Page Range / eLocation ID:
- 208 to 222
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An in‐depth study of donor–acceptor (D/A) interactions between the high‐dipole acceptor C60F18(A) and polycyclic aromatic hydrocarbon (PAH) donors—pyrene, perylene, and coronene—reveals a surprisingly strong PAH size influence on the D/A complex stoichiometry and ordering in co‐crystals. The crystallographic study shows the tendency of D/A mixtures to form stacked layered structures for the larger PAHs, perylene and coronene, while the role of aromatic π–π interactions diminishes, in contrast to the smaller pyrene/C60F18system. The behavior of the layered‐D/A assemblies is investigated by utilizing sequential deposition and co‐evaporation of C60F18and coronene on Au(111) surfaces. Scanning tunneling microscopy shows that the flat lying configuration adopted by coronene on the metal, which forms highly ordered close‐packed monolayers stabilized by the interaction between their π electrons and the high density of gold surface states, hinders the formation of the ordered assemblies of the corresponding co‐crystal. The influence of the substrate plus the critical role played by electronic and steric effects in the co‐crystal formation are believed to cause the lack of viability. However, it is remarkable that, on the surface, adsorbed single C60F18molecules are well centered on top of one coronene molecule, facilitating charge transfer between D and A molecules.more » « less
-
In this paper, the complex dielectric function of 2,5-bis(N,N-dibutyl-4-aminophenyl) thiazolo[5,4-d]thiazole is reported. Thin films of this material were obtained by spin coating on a silicon substrate. The samples were investigated using spectroscopic ellipsometry in the spectral range from 354 nm to 1907 nm at multiple angles of incidence. The ellipsometric data were analyzed using a stratified-layer model composed of a thiazolothiazole thin film, a native SiO2oxide, and a Si substrate. The model dielectric function of the thiazolothiazole thin film was modeled using a series of Tauc-Lorentz and Gaussian oscillators. The best-model calculated data reproduces the experimental data very well. The bandgap of TTz is reported and found to be in good agreement with density functional theory calculations reported earlier.more » « less
-
Hydrolysis of ionic liquid–treated substrate with an Iocasia fonsfrigidae strain SP3-1 endoglucanaseAbstractRecently, we reported the discovery of a novel endoglucanase of the glycoside hydrolase family 12 (GH12), designated IfCelS12A, from the haloalkaliphilic anaerobic bacteriumIocasia fonsfrigidaestrain SP3-1, which was isolated from a hypersaline pond in the Samut Sakhon province of Thailand (ca. 2017). IfCelS12A exhibits high substrate specificity on carboxymethyl cellulose and amorphous cellulose but low substrate specificity on b-1,3;1,4-glucan. Unlike some endoglucanases of the GH12 family, IfCelS12A does not exhibit hydrolytic activity on crystalline cellulose (i.e., Avicel™). High-Pressure Liquid Chromatography (HPLC) and Thin Layer Chromatography (TLC) analyses of products resulting from IfCelS12-mediated hydrolysis indicate mode of action for this enzyme. Notably, IfCelS12A preferentially hydrolyzes cellotetraoses, cellopentaoses, and cellohexaoses with negligible activity on cellobiose or cellotriose. Kinetic analysis with cellopentaose and barely b-d-glucan as cellulosic substrates were conducted. On cellopentaose, IfCelS12A demonstrates a 16-fold increase in activity (KM = 0.27 mM;kcat = 0.36 s−1;kcat/KM = 1.34 mM−1s−1) compared to the enzymatic hydrolysis of barley b-d-glucan (KM: 0.04 mM,kcat: 0.51 s−1,kcat/KM = 0.08 mM−1s−1). Moreover, IfCelS12A enzymatic efficacy is stable in hypersaline sodium chlorids (NaCl) solutions (up to 10% NaCl). Specifically, IfCel12A retains notable activity after 24 h at 2M NaCl (10% saline solution). IfCelS12A used as a cocktail component with other cellulolytic enzymes and in conjunction with mobile sequestration platform technology offers additional options for deconstruction of ionic liquid–pretreated cellulosic feedstock. Key points•IfCelS12A from an anaerobic alkaliphile Iocasia fronsfrigidae shows salt tolerance•IfCelS12A in cocktails with other enzymes efficiently degrades cellulosic biomass•IfCelS12A used with mobile enzyme sequestration platforms enhances hydrolysismore » « less
-
Abstract A metal/ligand cooperative approach to the reduction of small molecules by metal silylene complexes (R2Si=M) is demonstrated, whereby silicon activates the incoming substrate and mediates net two‐electron transformations by one‐electron redox processes at two metal centers. An appropriately tuned cationic pincer cobalt(I) complex, featuring a central silylene donor, reacts with CO2to afford a bimetallic siloxane, featuring two CoIIcenters, with liberation of CO; reaction of the silylene complex with ethylene yields a similar bimetallic product with an ethylene bridge. Experimental and computational studies suggest a plausible mechanism proceeding by [2+2] cycloaddition to the silylene complex, which is quite sensitive to the steric environment. The CoII/CoIIproducts are reactive to oxidation and reduction. Taken together, these findings demonstrate a strategy for metal/ligand cooperative small‐molecule activation that is well‐suited to 3dmetals.more » « less
An official website of the United States government

