skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wetland Classification, Attribute Accuracy, and Scale
Quantification of all types of uncertainty helps to establish reliability in any analysis. This research focuses on uncertainty in two attribute levels of wetland classification and creates visualization tools to guide analysis of spatial uncertainty patterns over several scales. A novel variant of confusion matrix analysis compares the Cowardin and Hydrogeomorphic wetland classification systems, identifying areas and types of misclassification for binary and multivariate categories. The specific focus on uncertainty in the paper refers to categorical consistency, that is, agreement between the two classification systems, rather than comparing observed data to ground truth. Consistency is quantified using confusion matrix analysis. Aggregation across progressive focal windows transforms the confusion matrix into a multiscale data pyramid for quick determination of where attribute uncertainty is highly variant, and at what spatial resolutions classification inconsistencies emerge. The focal pyramids summarize precision, recall, and F1 scores to visualize classification differences across spatial scales. Findings show that the F1 scores appear most informative on agreement about wetlands misclassification at both coarse and fine attribute scales. The pyramid organizes multi-scale uncertainty in a single unified framework and can be “sliced” to view individual focal levels of attribute consistency. Results demonstrate how the confusion matrix can be used to quantify the percentage of a study area in which inconsistencies occur reflecting wetland presence and type. The research provides confusion metrics and display tools to focus attention on specific areas of large data sets where attribute uncertainty patterns may be complex, thus reducing land managers’ workloads by highlighting areas of uncertainty where field checking might be appropriate, and improving analytics by providing visualization tools to quickly see where such areas occur.  more » « less
Award ID(s):
2102019 1853866
PAR ID:
10555983
Author(s) / Creator(s):
; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
ISPRS International Journal of Geo-Information
Volume:
13
Issue:
3
ISSN:
2220-9964
Page Range / eLocation ID:
103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Existing malicious code detection techniques demand the integration of multiple tools to detect different malware patterns, often suffering from high misclassification rates. Therefore, malicious code detection techniques could be enhanced by adopting advanced, more automated approaches to achieve high accuracy and a low misclassification rate. The goal of this study is to aid security analysts in detecting malicious packages by empirically studying the effectiveness of Large Language Models (LLMs) in detecting malicious code. We present SocketAI, a malicious code review workflow to detect malicious code. To evaluate the effectiveness SocketAI, we leverage a benchmark dataset of 5,115 npm packages, of which 2,180 packages have malicious code. We conducted a baseline comparison of GPT-3 and GPT-4 models with the state-of-the-art CodeQL static analysis tool, using 39 custom CodeQL rules developed in prior research to detect malicious Javascript code. We also compare the effectiveness of static analysis as a pre-screener with SocketAI workflow, measuring the number of files that need to be analyzed and the associated costs. Additionally, we performed a qualitative study to understand the types of malicious packages detected or missed by our workflow. Our baseline comparison demonstrates a 16% and 9% improvement over static analysis in precision and F1 scores, respectively. GPT-4 achieves higher accuracy with 99% precision and 97% F1 scores, while GPT-3 offers a more cost-effective balance at 91% precision and 94% F1 scores. Prescreening files with a static analyzer reduces the number of files requiring LLM analysis by 77.9% and decreases costs by 60.9% for GPT-3 and 76.1% for GPT-4. Our qualitative analysis identified data theft, execution of arbitrary code, and suspicious domain categories as the top detected malicious packages. 
    more » « less
  2. Abstract The use of network analysis as a means of visualizing the off‐diagonal (misclassified) elements of a confusion matrix is demonstrated, and the potential to use the network graphs as a guide for developing hierarchical classification models is presented. A very brief summary of graph theory is described. This is followed by an explanation and code with examples of how these networks can then be used for visualization of confusion matrices. The use of network graphs to provide insight into differing model performance is also addressed. 
    more » « less
  3. Due to the growing volume of remote sensing data and the low latency required for safe marine navigation, machine learning (ML) algorithms are being developed to accelerate sea ice chart generation, currently a manual interpretation task. However, the low signal-to-noise ratio of the freely available Sentinel-1 Synthetic Aperture Radar (SAR) imagery, the ambiguity of backscatter signals for ice types, and the scarcity of open-source high-resolution labelled data makes automating sea ice mapping challenging. We use Extreme Earth version 2, a high-resolution benchmark dataset generated for ML training and evaluation, to investigate the effectiveness of ML for automated sea ice mapping. Our customized pipeline combines ResNets and Atrous Spatial Pyramid Pooling for SAR image segmentation. We investigate the performance of our model for: i) binary classification of sea ice and open water in a segmentation framework; and ii) a multiclass segmentation of five sea ice types. For binary ice-water classification, models trained with our largest training set have weighted F1 scores all greater than 0.95 for January and July test scenes. Specifically, the median weighted F1 score was 0.98, indicating high performance for both months. By comparison, a competitive baseline U-Net has a weighted average F1 score of ranging from 0.92 to 0.94 (median 0.93) for July, and 0.97 to 0.98 (median 0.97) for January. Multiclass ice type classification is more challenging, and even though our models achieve 2% improvement in weighted F1 average compared to the baseline U-Net, test weighted F1 is generally between 0.6 and 0.80. Our approach can efficiently segment full SAR scenes in one run, is faster than the baseline U-Net, retains spatial resolution and dimension, and is more robust against noise compared to approaches that rely on patch classification. 
    more » « less
  4. Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A. (Ed.)
    While neural network binary classifiers are often evaluated on metrics such as Accuracy and F1-Score, they are commonly trained with a cross-entropy objective. How can this training-evaluation gap be addressed? While specific techniques have been adopted to optimize certain confusion matrix based metrics, it is challenging or impossible in some cases to generalize the techniques to other metrics. Adversarial learning approaches have also been proposed to optimize networks via confusion matrix based metrics, but they tend to be much slower than common training methods. In this work, we propose a unifying approach to training neural network binary classifiers that combines a differentiable approximation of the Heaviside function with a probabilistic view of the typical confusion matrix values using soft sets. Our theoretical analysis shows the benefit of using our method to optimize for a given evaluation metric, such as F1-Score, with soft sets, and our extensive experiments show the effectiveness of our approach in several domains. 
    more » « less
  5. We consider the problem of inferring the conditional independence graph (CIG) of high-dimensional Gaussian vectors from multi-attribute data. Most existing methods for graph estimation are based on single-attribute models where one associates a scalar random variable with each node. In multi-attribute graphical models, each node represents a random vector. In this paper we provide a unified theoretical analysis of multi-attribute graph learning using a penalized log-likelihood objective function. We consider both convex (sparse-group lasso) and sparse-group non-convex (log-sum and smoothly clipped absolute deviation (SCAD) penalties) penalty/regularization functions. An alternating direction method of multipliers (ADMM) approach coupled with local linear approximation to non-convex penalties is presented for optimization of the objective function. For non-convex penalties, theoretical analysis establishing local consistency in support recovery, local convexity and precision matrix estimation in high-dimensional settings is provided under two sets of sufficient conditions: with and without some irrepresentability conditions. We illustrate our approaches using both synthetic and real-data numerical examples. In the synthetic data examples the sparse-group log-sum penalized objective function significantly outperformed the lasso penalized as well as SCAD penalized objective functions with F1 -score and Hamming distance as performance metrics. 
    more » « less