skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The slice spectral sequence for a motivic analogue of the connective K(1)$K(1)$‐local sphere
Abstract We compute the 2‐adic effective slice spectral sequence (ESSS) for the motivic stable homotopy groups of , a motivic analogue of the connective ‐local sphere over prime fields of characteristic not two. Together with the analogous computation over algebraically closed fields, this yields information about the motivic ‐local sphere over arbitrary base fields of characteristic not two. To compute the spectral sequence, we prove several results that may be of independent interest. We describe the ‐differentials in the slice spectral sequence in terms of the motivic Steenrod operations over general base fields, building on analogous results of Ananyevskiy, Röndigs, and Østvær for the very effective cover of Hermitian K‐theory. We also explicitly describe the coefficients of certain motivic Eilenberg–MacLane spectra and compute the ESSS for the very effective cover of Hermitian K‐theory over prime fields.  more » « less
Award ID(s):
2414922 2039316 1926686
PAR ID:
10556460
Author(s) / Creator(s):
;
Publisher / Repository:
London Mathematical Society
Date Published:
Journal Name:
Proceedings of the London Mathematical Society
Volume:
129
Issue:
5
ISSN:
0024-6115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We identify the motivicKGL/2-local sphere as the fiber of\psi^{3}-1on(2,\eta)-completed HermitianK-theory, over any base scheme containing1/2. This is a motivic analogue of the classical resolution of theK(1)-local sphere, and extends to a description of theKGL/2-localization of an arbitrary motivic spectrum. Our proof relies on a novel conservativity argument that should be of broad utility in stable motivic homotopy theory. 
    more » « less
  2. We define the Chow t-structure on the ∞-category of motivic spectra SH(k) over an arbitrary base field k. We identify the heart of this t-structure SH(k)c♡ when the exponential characteristic of k is inverted. Restricting to the cellular subcategory, we identify the Chow heart SH(k)cell,c♡ as the category of even graded MU2∗MU-comodules. Furthermore, we show that the ∞-category of modules over the Chow truncated sphere spectrum 1c=0 is algebraic. Our results generalize the ones in Gheorghe–Wang–Xu in three aspects: to integral results; to all base fields other than just C; to the entire ∞-category of motivic spectra SH(k), rather than a subcategory containing only certain cellular objects. We also discuss a strategy for computing motivic stable homotopy groups of (p-completed) spheres over an arbitrary base field k using the Postnikov–Whitehead tower associated to the Chow t-structure and the motivic Adams spectral sequences over k. 
    more » « less
  3. We compute the $$v_1$$-periodic $$\mathbb{R}$$-motivic stable homotopy groups. The main tool is the effective slice spectral sequence. Along the way, we also analyze $$\mathbb{C}$$-motivic and $$\eta$$-periodic $$v_1$$-periodic homotopy from the same perspective. 
    more » « less
  4. Beliaev, Dmitry; Smirnov, Stanislav (Ed.)
    We consider the problem of computing the stable homotopy groups of spheres, including applications and history. We describe a new technique that yields streamlined computations through dimension 61 and gives new computations through dimension 90 with very few exceptions. We discuss questions and conjectures for further study, including a new approach to the computation of motivic stable homotopy groups over arbitrary base fields. We provide complete charts for the Adams spectral sequence through dimension 90. 
    more » « less
  5. Let p∈Z be an odd prime. We prove a spectral version of Tate–Poitou duality for the algebraic K-theory spectra of number rings with p inverted. This identifies the homotopy type of the fiber of the cyclotomic trace K(OF)∧p→TC(OF)∧p after taking a suitably connective cover. As an application, we identify the homotopy type at odd primes of the homotopy fiber of the cyclotomic trace for the sphere spectrum in terms of the algebraic K-theory of Z. 
    more » « less