skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermodynamics and entropic inference of nanoscale magnetic structures in Gd
Abstract A bulk gadolinium (Gd) single crystal exhibits virtually zero remnant magnetization, a common trait among soft uniaxial ferromagnets. This characteristic is reflected in our magnetometry data showing virtually hysteresis free isothermal magnetization loops with large saturation magnetization. The absence of hysteresis allows to model the measured easy axis magnetization as a function of temperature and applied magnetic field, rather than a relation, which permits the application of Maxwell relations from equilibrium thermodynamics. Demagnetization effects broaden the isothermal first-order transition from negative to positive magnetization. By analyzing magnetization data within the coexistence regime, we deduce the isothermal entropy change and the field-induced heat capacity change. Comparing the numerically inferred heat capacity with relaxation calorimetric data confirms the applicability of the Maxwell relation. Analysis of the entropy in the mixed phase region suggests the presence of hitherto unresolved nanoscale magnetic structures in the demagnetized state of Gd. To support this prediction, Monte Carlo simulations of a 3D Ising model with dipolar interactions are performed. Analyzing the cluster size statistics and magnetization from the model provides strong qualitative support of our analytic approach.  more » « less
Award ID(s):
2044049
PAR ID:
10556895
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics: Condensed Matter
Volume:
37
Issue:
6
ISSN:
0953-8984
Format(s):
Medium: X Size: Article No. 065705
Size(s):
Article No. 065705
Sponsoring Org:
National Science Foundation
More Like this
  1. A magnetocaloric effect (MCE) with sizable isothermal entropy change (ΔS) maintained over a broad range of temperatures above the blocking temperature is reported for a rare earth-free superparamagnetic nanoparticle system comprising of Fe–TiN heterostructure. Superparamagnetic iron (Fe) particles were embedded in a titanium nitride (TiN) thin film matrix in a TiN/Fe/TiN multilayered pattern using a pulsed laser deposition method. High angle annular dark-field images in conjunction with dispersive energy analysis, recorded using scanning transmission electron microscopy, show a clear presence of alternating layers of Fe and TiN with a distinct atomic number contrast between Fe particles and TiN. Quantitative information about the isothermal entropy change (ΔS) and the magnetocaloric effect in the multilayer Fe–TiN system has been obtained by applying Maxwell relation to the magnetization vs temperature data at various fields. With the absence of a dynamic magnetic hysteresis above the blocking temperature, the negative ΔS as high as 4.18 × 103 J/Km3 (normal or forward MCE) is obtained at 3 T at 300 K. 
    more » « less
  2. The magnetocaloric effect (MCE) in iron (Fe) nanoparticles incorporated within a titanium nitride (TiN) thin-film matrix grown using pulsed laser deposition (PLD) is investigated in this study. The study demonstrates the ability to control the entropy change across the magnetic phase transition by varying the size of the Fe nanoparticles. The structural characterization carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and scanning transmission electron (TEM) showed that TiN films are (111) textured, while the Fe-particles are mostly spherical in shapes, are single-crystalline, and have a coherent structure with the surrounding TiN thin-film matrix. The TiN thin-film matrix was chosen as a spacer layer since it is nonmagnetic, is highly corrosion-resistive, and can serve as an excellent conduit for extracting heat due to its high thermal conductivity (11 W/m K). The magnetic properties of Fe–TiN systems were investigated using a superconducting quantum interference device (SQUID) magnetometer. In-plane magnetic fields were applied to record magnetization versus field (M–H) and magnetization versus temperature (M–T) curves. The results showed that the Fe–TiN heterostructure system exhibits a substantial isothermal entropy change (ΔS) over a wide temperature range, encompassing room temperature to the blocking temperature of the Fe nanoparticles. Using Maxwell’s relation and analyzing magnetization–temperature data under different magnetic fields, quantitative insights into the isothermal entropy change (ΔS) and magnetocaloric effect (MCE) were obtained for the Fe–TiN heterostructure system. The study points out a considerable negative change in ΔS that reaches up to 0.2 J/kg K at 0.2 T and 300 K for the samples with a nanoparticle size on the order of 7 nm. Comparative analysis revealed that Fe nanoparticle samples demonstrate higher refrigeration capacity (RC) in comparison to Fe thin-film multilayer samples, with the RC increasing as the Fe particle size decreases. These findings provide valuable insights into the potential application of Fe–TiN heterostructures in solid-state cooling technologies, highlighting their enhanced magnetocaloric properties. 
    more » « less
  3. Abstract We introduce a non-isothermal phase-field crystal model including heat flux and thermal expansion of the crystal lattice. The fundamental thermodynamic relation between internal energy and entropy, as well as entropy production, is derived analytically and further verified by numerical benchmark simulations. Furthermore, we examine how the different model parameters control density and temperature evolution during dendritic solidification through extensive parameter studies. Finally, we extend our framework to the modeling of open systems considering external mass and heat fluxes. This work sets the ground for a comprehensive mesoscale model of non-isothermal solidification including thermal expansion within an entropy-producing framework, and provides a benchmark for further meso- to macroscopic modeling of solidification. 
    more » « less
  4. Data files for rock magnetic data collected on discrete samples at the Institute for Rock Magnetism, University of Minnesota on a Quantum Designs Magnetic Properties System 3 (MPMS3) and Lakeshore Model 8600 Vibrating Sample Magnetometer (VSM). Data include Field Cooled (FC), Zero Field Cooled (ZFC), and Low Temperature Cycling of Room Temperature Saturation Isothermal Remanent Magnetization (LTC-RTSIRM) curves measured on the MPMS and Hysteresis Loops, Direct Current Demagnetization Curves, and Hysteresis Loops collected on the VSM. 
    more » « less
  5. {"Abstract":["Rock magnetic data from IODP Exp. 382 Sites U1537 and U1538 to support Reilly et al. "A geochemical mechanism for >10 m offsets of magnetic reversals inferred from the comparison of two Scotia Sea drill sites"\nExcel Files:\n\nU1537_CubeSummary_Zenodo.xlsx : Summary of NRM, ARM, IRM, and magnetic susceptibility investigations on U1537 cube samples\nU1538_CubeSummary_Zenodo.xlsx : Summary of NRM, ARM, IRM, and magnetic susceptibility investigations on U1538 cube samples\nZip Files:\n\nFORC_Data.zip : First order reversal curve data files in MicroMag format for samples discussed in paper\nDCD_Data.zip : DC Demagnetization curve data files for samples discussed in paper\nHysteresis_Data.zip : Hysteresis Loops for samples discussed in paper\nMPMS_Data.zip : Data collected on Magnetics Property Measurement System 3, including Field Cooled/Zero Field Cooled Curves, Low Temperature Cycling of Room Temperature IRM, and AC Susceptibility\n \nNRM = Natural Remanent Magnetization; ARM = Anhysteretic Remanent Magnetization; IRM = Isothermal Remanent Magnetization"]} 
    more » « less