A magnetocaloric effect (MCE) with sizable isothermal entropy change (ΔS) maintained over a broad range of temperatures above the blocking temperature is reported for a rare earth-free superparamagnetic nanoparticle system comprising of Fe–TiN heterostructure. Superparamagnetic iron (Fe) particles were embedded in a titanium nitride (TiN) thin film matrix in a TiN/Fe/TiN multilayered pattern using a pulsed laser deposition method. High angle annular dark-field images in conjunction with dispersive energy analysis, recorded using scanning transmission electron microscopy, show a clear presence of alternating layers of Fe and TiN with a distinct atomic number contrast between Fe particles and TiN. Quantitative information about the isothermal entropy change (ΔS) and the magnetocaloric effect in the multilayer Fe–TiN system has been obtained by applying Maxwell relation to the magnetization vs temperature data at various fields. With the absence of a dynamic magnetic hysteresis above the blocking temperature, the negative ΔS as high as 4.18 × 103 J/Km3 (normal or forward MCE) is obtained at 3 T at 300 K. 
                        more » 
                        « less   
                    
                            
                            Thermodynamics and entropic inference of nanoscale magnetic structures in Gd
                        
                    
    
            Abstract A bulk gadolinium (Gd) single crystal exhibits virtually zero remnant magnetization, a common trait among soft uniaxial ferromagnets. This characteristic is reflected in our magnetometry data showing virtually hysteresis free isothermal magnetization loops with large saturation magnetization. The absence of hysteresis allows to model the measured easy axis magnetization as a function of temperature and applied magnetic field, rather than a relation, which permits the application of Maxwell relations from equilibrium thermodynamics. Demagnetization effects broaden the isothermal first-order transition from negative to positive magnetization. By analyzing magnetization data within the coexistence regime, we deduce the isothermal entropy change and the field-induced heat capacity change. Comparing the numerically inferred heat capacity with relaxation calorimetric data confirms the applicability of the Maxwell relation. Analysis of the entropy in the mixed phase region suggests the presence of hitherto unresolved nanoscale magnetic structures in the demagnetized state of Gd. To support this prediction, Monte Carlo simulations of a 3D Ising model with dipolar interactions are performed. Analyzing the cluster size statistics and magnetization from the model provides strong qualitative support of our analytic approach. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2044049
- PAR ID:
- 10556895
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Physics: Condensed Matter
- Volume:
- 37
- Issue:
- 6
- ISSN:
- 0953-8984
- Format(s):
- Medium: X Size: Article No. 065705
- Size(s):
- Article No. 065705
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The magnetocaloric effect (MCE) in iron (Fe) nanoparticles incorporated within a titanium nitride (TiN) thin-film matrix grown using pulsed laser deposition (PLD) is investigated in this study. The study demonstrates the ability to control the entropy change across the magnetic phase transition by varying the size of the Fe nanoparticles. The structural characterization carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and scanning transmission electron (TEM) showed that TiN films are (111) textured, while the Fe-particles are mostly spherical in shapes, are single-crystalline, and have a coherent structure with the surrounding TiN thin-film matrix. The TiN thin-film matrix was chosen as a spacer layer since it is nonmagnetic, is highly corrosion-resistive, and can serve as an excellent conduit for extracting heat due to its high thermal conductivity (11 W/m K). The magnetic properties of Fe–TiN systems were investigated using a superconducting quantum interference device (SQUID) magnetometer. In-plane magnetic fields were applied to record magnetization versus field (M–H) and magnetization versus temperature (M–T) curves. The results showed that the Fe–TiN heterostructure system exhibits a substantial isothermal entropy change (ΔS) over a wide temperature range, encompassing room temperature to the blocking temperature of the Fe nanoparticles. Using Maxwell’s relation and analyzing magnetization–temperature data under different magnetic fields, quantitative insights into the isothermal entropy change (ΔS) and magnetocaloric effect (MCE) were obtained for the Fe–TiN heterostructure system. The study points out a considerable negative change in ΔS that reaches up to 0.2 J/kg K at 0.2 T and 300 K for the samples with a nanoparticle size on the order of 7 nm. Comparative analysis revealed that Fe nanoparticle samples demonstrate higher refrigeration capacity (RC) in comparison to Fe thin-film multilayer samples, with the RC increasing as the Fe particle size decreases. These findings provide valuable insights into the potential application of Fe–TiN heterostructures in solid-state cooling technologies, highlighting their enhanced magnetocaloric properties.more » « less
- 
            Abstract We introduce a non-isothermal phase-field crystal model including heat flux and thermal expansion of the crystal lattice. The fundamental thermodynamic relation between internal energy and entropy, as well as entropy production, is derived analytically and further verified by numerical benchmark simulations. Furthermore, we examine how the different model parameters control density and temperature evolution during dendritic solidification through extensive parameter studies. Finally, we extend our framework to the modeling of open systems considering external mass and heat fluxes. This work sets the ground for a comprehensive mesoscale model of non-isothermal solidification including thermal expansion within an entropy-producing framework, and provides a benchmark for further meso- to macroscopic modeling of solidification.more » « less
- 
            The bulk van der Waals crystal Mn3Si2Te6 (MST) has been irradiated with a proton beam of 2 MeV at a fluence of 1×1018 H+ cm-2. The temperature dependent magnetization measurements show a drastic decrease in the magnetization of 49.2% in the H//c direction observed in ferrimagnetic state. This decrease in magnetization is also reflected in the isothermal magnetization curves. No significant change in the ferrimagnetic transition temperature (75 K) was reflected after irradiation. Electron paramagnetic resonance (EPR) spectroscopy shows no magnetically active defects present after irradiation. Here, experimental findings gathered from MST bulk crystals via magnetic measurements, magnetocaloric effect, and heat capacity are discussed.more » « less
- 
            We measured the natural remanent magnetization (NRM) and rock magnetic properties of 57 sediment samples and 38 basalt samples from Tūranganui Knoll on the Hikurangi Plateau collected at Site U1526 during International Ocean Discovery Program Expedition 375. NRM was measured on all samples before and after either progressive alternating field or thermal demagnetization. Principal component analysis was conducted to provide estimates of the characteristic remanent magnetization direction. Rock magnetic observations include measurements on select samples of the bulk magnetic susceptibility, susceptibility versus heating for Curie temperature assessment, magnetic hysteresis, backfield for coercivity of remanence determinations, isothermal remanent magnetization, and first-order reversal curves.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
