skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Realizing finite groups as automizers
Abstract It is shown that any finite group 𝐴 is realizable as the automizer in a finite perfect group 𝐺 of an abelian subgroup whose conjugates generate 𝐺.The construction uses techniques from fusion systems on arbitrary finite groups, most notably certain realization results for fusion systems of the type studied originally by Park.  more » « less
Award ID(s):
1902152
PAR ID:
10557260
Author(s) / Creator(s):
;
Publisher / Repository:
de Gruyter
Date Published:
Journal Name:
Journal of Group Theory
Volume:
0
Issue:
0
ISSN:
1433-5883
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The transporter systems of Oliver and Ventura and the localities of Chermak are classes of algebraic structures that model the ‐local structures of finite groups. Other than the transporter categories and localities of finite groups, important examples include centric, quasicentric, and subcentric linking systems for saturated fusion systems. These examples are, however, not defined in general on the full collection of subgroups of the Sylow group. We study here punctured groups , a short name for transporter systems or localities on the collection of nonidentity subgroups of a finite ‐group. As an application of the existence of a punctured group, we show that the subgroup homology decomposition on the centric collection is sharp for the fusion system. We also prove a Signalizer Functor Theorem for punctured groups and use it to show that the smallest Benson–Solomon exotic fusion system at the prime 2 has a punctured group, while the others do not. As for exotic fusion systems at odd primes , we survey several classes and find that in almost all cases, either the subcentric linking system is a punctured group for the system, or the system has no punctured group because the normalizer of some subgroup of order is exotic. Finally, we classify punctured groups restricting to the centric linking system for certain fusion systems on extraspecial ‐groups of order . 
    more » « less
  2. Abstract For a finite group , a ‐crossed braided fusion category is a ‐graded fusion category with additional structures, namely, a ‐action and a ‐braiding. We develop the notion of ‐crossed braided zesting: an explicit method for constructing new ‐crossed braided fusion categories from a given one by means of cohomological data associated with the invertible objects in the category and grading group . This is achieved by adapting a similar construction for (braided) fusion categories recently described by the authors. All ‐crossed braided zestings of a given category are ‐extensions of their trivial component and can be interpreted in terms of the homotopy‐based description of Etingof, Nikshych, and Ostrik. In particular, we explicitly describe which ‐extensions correspond to ‐crossed braided zestings. 
    more » « less
  3. Abstract To each pair consisting of a saturated fusion system over a p -group together with a compatible family of Külshammer-Puig cohomology classes, one can count weights in a hypothetical block algebra arising from these data. When the pair arises from a genuine block of a finite group algebra in characteristic p , the number of conjugacy classes of weights is supposed to be the number of simple modules in the block. We show that there is unique such pair associated with each Benson-Solomon exotic fusion system, and that the number of weights in a hypothetical Benson-Solomon block is $12$ , independently of the field of definition. This is carried out in part by listing explicitly up to conjugacy all centric radical subgroups and their outer automorphism groups in these systems. 
    more » « less
  4. A braided fusion category is said to have Property F if the associated braid group representations factor through a finite group. We verify integral metaplectic modular categories have property F by showing these categories are group-theoretical. For the special case of integral categories [Formula: see text] with the fusion rules of [Formula: see text] we determine the finite group [Formula: see text] for which [Formula: see text] is braided equivalent to [Formula: see text]. In addition, we determine the associated classical link invariant, an evaluation of the 2-variable Kauffman polynomial at a point. 
    more » « less
  5. null (Ed.)
    Abstract A rigid automorphism of a linking system is an automorphism that restricts to the identity on the Sylow subgroup. A rigid inner automorphism is conjugation by an element in the center of the Sylow subgroup. At odd primes, it is known that each rigid automorphism of a centric linking system is inner. We prove that the group of rigid outer automorphisms of a linking system at the prime $$2$$ is elementary abelian and that it splits over the subgroup of rigid inner automorphisms. In a second result, we show that if an automorphism of a finite group G restricts to the identity on the centric linking system for G , then it is of $p'$ -order modulo the group of inner automorphisms, provided G has no nontrivial normal $p'$ -subgroups. We present two applications of this last result, one to tame fusion systems. 
    more » « less