skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Functional Hypergraphs of Stock Markets
In stock markets, nonlinear interdependencies between various companies result in nontrivial time-varying patterns in stock prices. A network representation of these interdependencies has been successful in identifying and understanding hidden signals before major events like stock market crashes. However, these studies have revolved around the assumption that correlations are mediated in a pairwise manner, whereas, in a system as intricate as this, the interactions need not be limited to pairwise only. Here, we introduce a general methodology using information-theoretic tools to construct a higher-order representation of the stock market data, which we call functional hypergraphs. This framework enables us to examine stock market events by analyzing the following functional hypergraph quantities: Forman–Ricci curvature, von Neumann entropy, and eigenvector centrality. We compare the corresponding quantities of networks and hypergraphs to analyze the evolution of both structures and observe features like robustness towards events like crashes during the course of a time period.  more » « less
Award ID(s):
2311160
PAR ID:
10557680
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Entropy
Volume:
26
Issue:
10
ISSN:
1099-4300
Page Range / eLocation ID:
848
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Phillip Bradford, S. Andrew (Ed.)
    The stock market is as volatile as it is unpredictable, the unstable nature of the stock market results in fluctuations in stock prices and invariably, the market performance of stocks. Understanding the underlying factors that contribute to the volatility of the stock market, which has its consequences on stock prices, has become important to researchers and investors alike. Some of the methods that researchers have used in the past as a gauge for understanding market performance include analyzing economic conditions, understanding company performance, following geopolitical events and market trends. To contribute to the vast research field of stock price predictions and the challenge of understanding stock price fluctuations, this study will aim to find a relationship between human sentiments on the social media platform, Reddit, and the S&P 500 stock index. In this study, we will analyze posts from five subreddits that typically discuss the stock market and stock price fluctuations. This will form the first part of our dataset. Historical stock prices for the S&P 500 index will be obtained from Yahoo Finance. This will form our final dataset. Using VADER (Valence aware dictionary and sentiment reasoner), we will extract the sentiments within the five subreddits and categorize them into positive and negative sentiments. The historical stock prices from Yahoo finance will be matched with the aggregate sentiments for each day and this data passed through the LSTM model for training. Our findings provide strong evidence of social media’s impact on stock price predictions. 
    more » « less
  2. In this paper, we develop the theory of functional generation of portfolios in an equity market with changing dimension. By introducing dimensional jumps in the market, as well as jumps in stock capitalization between the dimensional jumps, we construct different types of self‐financing stock portfolios (additive, multiplicative, and rank‐based) in a very general setting. Our study explains how a dimensional change caused by a listing or delisting event of a stock, and unexpected shocks in the market, affect portfolio return. We also provide empirical analyses of some classical portfolios, quantifying the impact of dimensional change in portfolio performance relative to the market. 
    more » « less
  3. Abstract The concept of “resilience analytics” has recently been proposed as a means to leverage the promise of big data to improve the resilience of interdependent critical infrastructure systems and the communities supported by them. Given recent advances in machine learning and other data‐driven analytic techniques, as well as the prevalence of high‐profile natural and man‐made disasters, the temptation to pursue resilience analytics without question is almost overwhelming. Indeed, we find big data analytics capable to support resilience to rare, situational surprises captured in analytic models. Nonetheless, this article examines the efficacy of resilience analytics by answering a single motivating question: Can big data analytics help cyber–physical–social (CPS) systems adapt to surprise? This article explains the limitations of resilience analytics when critical infrastructure systems are challenged by fundamental surprises never conceived during model development. In these cases, adoption of resilience analytics may prove either useless for decision support or harmful by increasing dangers during unprecedented events. We demonstrate that these dangers are not limited to a single CPS context by highlighting the limits of analytic models during hurricanes, dam failures, blackouts, and stock market crashes. We conclude that resilience analytics alone are not able to adapt to the very events that motivate their use and may, ironically, make CPS systems more vulnerable. We present avenues for future research to address this deficiency, with emphasis on improvisation to adapt CPS systems to fundamental surprise. 
    more » « less
  4. Pontiff, Jeffrey (Ed.)
    Abstract No previous infectious disease outbreak, including the Spanish Flu, has affected the stock market as forcefully as the COVID-19 pandemic. In fact, previous pandemics left only mild traces on the U.S. stock market. We use text-based methods to develop these points with respect to large daily stock market moves back to 1900 and with respect to overall stock market volatility back to 1985. We also evaluate potential explanations for the unprecedented stock market reaction to the COVID-19 pandemic. The evidence we amass suggests that government restrictions on commercial activity and voluntary social distancing, operating with powerful effects in a service-oriented economy, are the main reasons the U.S. stock market reacted so much more forcefully to COVID-19 than to previous pandemics in 1918–1919, 1957–1958, and 1968. 
    more » « less
  5. Complex systems frequently exhibit multi-way, rather than pairwise, interactions. These group interactions cannot be faithfully modeled as collections of pairwise interactions using graphs and instead require hypergraphs. However, methods that analyze hypergraphs directly, rather than via lossy graph reductions, remain limited. Hypergraph motifs hold promise in this regard, as motif patterns serve as building blocks for larger group interactions which are inexpressible by graphs. Recent work has focused on categorizing and counting hypergraph motifs based on the existence of nodes in hyperedge intersection regions. Here, we argue that the relative sizes of hyperedge intersections within motifs contain varied and valuable information. We propose a suite of efficient algorithms for finding top-k triplets of hyperedges based on optimizing the sizes of these intersection patterns. This formulation uncovers interesting local patterns of interaction, finding hyperedge triplets that either (1) are the least similar with each other, (2) have the highest pairwise but not groupwise correlation, or (3) are the most similar with each other. We formalize this as a combinatorial optimization problem and design efficient algorithms based on filtering hyperedges. Our comprehensive experimental evaluation shows that the resulting hyperedge triplets yield insightful information on real-world hypergraphs. Our approach is also orders of magnitude faster than a naive baseline implementation. 
    more » « less