Diffusion-based Text-to-Image (T2I) models have achieved impressive success in generating high-quality images from textual prompts. While large language models (LLMs) effectively leverage Direct Preference Optimization (DPO) for fine-tuning on human preference data without the need for reward models, diffusion models have not been extensively explored in this area. Current preference learning methods applied to T2I diffusion models immediately adapt existing techniques from LLMs. However, this direct adaptation introduces an estimated loss specific to T2I diffusion models. This estimation can potentially lead to suboptimal performance through our empirical results. In this work, we propose Direct Score Preference Optimization (DSPO), a novel algorithm that aligns the pretraining and fine-tuning objectives of diffusion models by leveraging score matching, the same objective used during pretraining. It introduces a new perspective on preference learning for diffusion models. Specifically, DSPO distills the score function of human-preferred image distributions into pretrained diffusion models, fine-tuning the model to generate outputs that align with human preferences. We theoretically show that DSPO shares the same optimization direction as reinforcement learning algorithms in diffusion models under certain conditions. Our experimental results demonstrate that DSPO outperforms preference learning baselines for T2I diffusion models in human preference evaluation tasks and enhances both visual appeal and prompt alignment of generated images.
more »
« less
Coactive Learning for Large Language Models using Implicit User Feedback
We propose coactive learning as a model and feedback mechanism for training large language models (LLMs). The key insight is that users provide implicit feedback whenever they edit the text y proposed by an LLM. While the edited text y¯ is typically not a gold-standard example for supervised training, coactive learning merely requires that the edited text y¯ is an improvement over the proposed text y. Note that such weak implicit preference feedback y¯≻y is available in many application settings on a per-user basis, thus enabling the personalization of LLMs. In this paper, we develop the theoretical basis for coactive training of non-linear models, and we derive CoRLL as the first coactive learning algorithm for LLMs. Empirical results indicate that CoRLL is effective even for weak and noisy coactive preference feedback, making it a promising algorithm for training and personalization of LLMs from feedback that is naturally collected in many use cases.
more »
« less
- Award ID(s):
- 2312865
- PAR ID:
- 10557888
- Publisher / Repository:
- International Conference on Machine Learning (ICML)
- Date Published:
- Edition / Version:
- PMLR
- Volume:
- 235
- ISSN:
- 2640-3498
- Page Range / eLocation ID:
- 48809-48822
- Format(s):
- Medium: X
- Location:
- Vienna, Austria
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Language models are aligned to emulate the collective voice of many, resulting in outputs that align with no one in particular. Steering LLMs away from generic output is possible through supervised finetuning or RLHF, but requires prohibitively large datasets for new ad-hoc tasks. We argue that it is instead possible to align an LLM to a specific setting by leveraging a very small number (< 10) of demonstrations as feedback. Our method, Demonstration ITerated Task Optimization (DITTO), directly aligns language model outputs to a user's demonstrated behaviors. Derived using ideas from online imitation learning, DITTO cheaply generates online comparison data by treating users' demonstrations as preferred over output from the LLM and its intermediate checkpoints. Concretely, DITTO operates by having an LLM generate examples that are presumed to be inferior to expert demonstrations. The method iteratively constructs pairwise preference relationships between these LLM-generated samples and expert demonstrations, potentially including comparisons between different training checkpoints. These constructed preference pairs are then used to train the model using a preference optimization algorithm (e.g. DPO). We evaluate DITTO's ability to learn fine-grained style and task alignment across domains such as news articles, emails, and blog posts. Additionally, we conduct a user study soliciting a range of demonstrations from participants (N = 16). Across our benchmarks and user study, we find that win-rates for DITTO outperform few-shot prompting, supervised fine-tuning, and other self-play methods by an avg. of 19% points. By using demonstrations as feedback directly, DITTO offers a novel method for effective customization of LLMs.more » « less
-
We study the problem of aligning large language models (LLMs) with human preference data. Contrastive preference optimization has shown promising results in aligning LLMs with available preference data by optimizing the implicit reward associated with the policy. However, the contrastive objective focuses mainly on the relative values of implicit rewards associated with two responses while ignoring their actual values, resulting in suboptimal alignment with human preferences. To address this limitation, we propose calibrated direct preference optimization (Cal-DPO), a simple yet effective algorithm. We show that substantial improvement in alignment with the given preferences can be achieved simply by calibrating the implicit reward to ensure that the learned implicit rewards are comparable in scale to the ground-truth rewards. We demonstrate the theoretical advantages of Cal-DPO over existing approaches. The results of our experiments on a variety of standard benchmarks show that Cal-DPO remarkably improves off-the-shelf methods.more » « less
-
Large language models (LLMs) are trained on a deluge of text data with limited quality control. As a result, LLMs can exhibit unintended or even harmful behaviours, such as leaking information, fake news or hate speech. Countermeasures, commonly referred to as preference alignment, include fine-tuning the pretrained LLMs with carefully crafted text examples of desired behaviour. Even then, empirical evidence shows preference aligned LLMs can be enticed to harmful behaviour. This so called jailbreaking of LLMs is typically achieved by adversarially modifying the input prompt to the LLM. Our paper provides theoretical insights into the phenomenon of preference alignment and jailbreaking from a statistical perspective. Under our framework, we first show that pretrained LLMs will mimic harmful behaviour if present in the training corpus. \textbf{Under that same framework, we then introduce a statistical notion of alignment, and lower-bound the jailbreaking probability, showing that it is unpreventable under reasonable assumptions.}more » « less
-
The potential for pre-trained large language models (LLMs) to use natural language feedback at inference time has been an exciting recent development. We build upon this observation by formalizing an algorithm for learning from natural language feedback at training time instead, which we call Imitation learning from Language Feedback (ILF). ILF requires only a small amount of human-written feedback during training and does not require the same feedback at test time, making it both user-friendly and sample-efficient. We further show that ILF can be seen as a form of minimizing the KL divergence to the target distribution and demonstrate proof-of-concepts on text summarization and program synthesis tasks. For code generation, ILF improves a Codegen-Mono 6.1B model’s pass@1 rate from 22% to 36% on the MBPP benchmark, outperforming both fine-tuning on MBPP and on human- written repaired programs. For summarization, we show that ILF can be combined with learning from human preferences to improve a GPT-3 model’s summarization performance to be comparable to human quality, outperforming fine-tuning on human-written summaries. Overall, our results suggest that ILF is both more effective and sample-efficient than training exclusively on demonstrations for improving an LLM’s performance on a variety of tasks.more » « less
An official website of the United States government

