skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Water quality–fisheries tradeoffs in a changing climate underscore the need for adaptive ecosystem–based management
Changes driven by both unanticipated human activities and management actions are creating wicked management landscapes in freshwater and marine ecosystems that require new approaches to support decision-making. By linking a predictive model of nutrient- and temperature-driven bottom hypoxia with observed commercial fishery harvest data from Lake Erie (United States–Canada) over the past century (1928–2022) and climate projections (2030–2099), we show how simple, yet robust models and routine monitoring data can be used to identify tradeoffs associated with nutrient management and guide decision-making in even the largest of aquatic ecosystems now and in the future. Our approach enabled us to assess planned nutrient load reduction targets designed to mitigate nutrient-driven hypoxia and show why they appear overly restrictive based on current fishery needs, indicating tradeoffs between water quality and fisheries management goals. At the same time, our temperature results show that projected climate change impacts on hypoxic extent will require more stringent nutrient regulations in the future. Beyond providing a rare example of bottom hypoxia driving changes in fishery harvests at an ecosystem scale, our study illustrates the need for adaptive ecosystem–based management, which can be informed by simple predictive models that can be readily applied over long time periods, account for tradeoffs across multiple management sectors (e.g., water quality, fisheries), and address ecosystem nonstationarity (e.g., climate change impacts on management targets). Such approaches will be critical for maintaining valued ecosystem services in the many aquatic systems worldwide that are vulnerable to multiple drivers of environmental change.  more » « less
Award ID(s):
2019435
PAR ID:
10558058
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
45
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bottom-towed fishing gears produce significant amounts of seafood globally but can result in seafloor habitat damage. Spatial closures provide an important option for mitigating benthic impacts, but their performance as a fisheries management policy depends on numerous factors, including how fish respond to habitat quality changes. Spatial fisheries management has largely focused on marine protected areas with static locations, overlooking dynamic spatial closures that change through time. To investigate the performance of dynamic closures, we develop a spatial fishery model with fishing-induced habitat damage, where habitat quality can affect both fish productivity and movement. We find that dynamic spatial closures often achieve greater harvest and habitat protection than fixed marine protected areas or conventional nonspatial maximum sustainable yield management, especially under strong habitat–stock interactions. Determining optimal dynamic spatial closures may require considerable information, but we find that simple policies of fixed-schedule rotating closures also perform well. Dynamic spatial closures have received less attention as fisheries management tools, and our results demonstrate their potential value for addressing both harvest and habitat impacts from fishing. 
    more » « less
  2. The emergence of ecosystem-based fisheries management (EBFM) has broadened the policy scope of fisheries management by accounting for the biological and ecological connectivity of fisheries. Less attention, however, has been given to the economic connectivity of fisheries. If fishers consider multiple fisheries when deciding where, when, and how much to fish, then management changes in one fishery can generate spillover impacts in other fisheries. Catch-share programs are a popular fisheries management framework that may be particularly prone to generating spillovers given that they typically change fishers’ incentives and their subsequent actions. We use data from Alaska fisheries to examine spillovers from each of the main catch-share programs in Alaska. We evaluate changes in participation—a traditional indicator in fisheries economics—in both the catch-share and non–catch-share fisheries. Using network analysis, we also investigate whether catch-share programs change the economic connectivity of fisheries, which can have implications for the socioeconomic resilience and robustness of the ecosystem, and empirically identify the set of fisheries impacted by each Alaska catch-share program. We find that cross-fishery participation spillovers and changes in economic connectivity coincide with some, but not all, catch-share programs. Our findings suggest that economic connectivity and the potential for cross-fishery spillovers deserve serious consideration, especially when designing and evaluating EBFM policies. 
    more » « less
  3. Abstract With mounting scientific evidence demonstrating adverse global climate change (GCC) impacts to water quality, water quality policies, such as the Total Maximum Daily Loads (TMDLs) under the U.S. Clean Water Act, have begun accounting for GCC effects in setting nutrient load‐reduction policy targets. These targets generally require nutrient reductions for attaining prescribed water quality standards (WQS) by setting safe levels of nutrient concentrations that curtail potentially harmful cyanobacteria blooms (CyanoHABs). While some governments require WQS to consider climate change, few tools are available to model the complex interactions between climate change and benthic legacy nutrients. We present a novel process‐based integrated assessment model (IAM) that examines the extent to which synergistic relationships between GCC and legacy Phosphorus release could compromise the ability of water quality policies to attain established WQS. The IAM is calibrated for simulating the eutrophic Missisquoi Bay and watershed in Lake Champlain (2001–2050). Water quality impacts of seven P‐reduction scenarios, including the 64.3% reduction specified under the current TMDL, were examined under 17 GCC scenarios. The TMDL WQS of 0.025 mg/L total phosphorus is unlikely to be met by 2035 under the mandated 64.3% reduction for all GCC scenarios. IAM simulations show that the frequency and severity of summer CyanoHABs increased or minimally decreased under most climate and nutrient reduction scenarios. By harnessing IAMs that couple complex process‐based simulation models, the management of water quality in freshwater lakes can become more adaptive through explicit accounting of GCC effects on both the external and internal sources of nutrients. 
    more » « less
  4. Abstract There is about to be an abrupt step-change in the use of coastal seas around the globe, specifically by the addition of large-scale offshore renewable energy (ORE) developments to combat climate change. Developing this sustainable energy supply will require trade-offs between both direct and indirect environmental effects, as well as spatial conflicts with marine uses like shipping, fishing, and recreation. However, the nexus between drivers, such as changes in the bio-physical environment from the introduction of structures and extraction of energy, and the consequent impacts on ecosystem services delivery and natural capital assets is poorly understood and rarely considered through a whole ecosystem perspective. Future marine planning needs to assess these changes as part of national policy level assessments but also to inform practitioners about the benefits and trade-offs between different uses of natural resources when making decisions to balance environmental and energy sustainability and socio-economic impacts. To address this shortfall, we propose an ecosystem-based natural capital evaluation framework that builds on a dynamic Bayesian modelling approach which accounts for the multiplicity of interactions between physical (e.g. bottom temperature), biological (e.g. net primary production) indicators and anthropogenic marine use (i.e. fishing) and their changes across space and over time. The proposed assessment framework measures ecosystem change, changes in ecosystem goods and services and changes in socio-economic value in response to ORE deployment scenarios as well as climate change, to provide objective information for decision processes seeking to integrate new uses into our marine ecosystems. Such a framework has the potential of exploring the likely outcomes in the same metrics (both ecological and socio-economic) from alternative management and climate scenarios, such that objective judgements and decisions can be made, as to how to balance the benefits and trade-offs between a range of marine uses to deliver long-term environmental sustainability, economic benefits, and social welfare. 
    more » « less
  5. U.S. coastal economies and communities are facing an unprecedented and growing number of impacts to coastal ecosystems including beach and fishery closures, harmful algal blooms, loss of critical habitat, as well as shoreline damage. This paper synthesizes our present understanding of the dynamics of human and ecosystem health in coastal systems with a focus on the need to better understand nearshore physical process interactions with coastal pollutants and ecosystems (e.g. fate and transport, circulation, depositional environment, climate change). It is organized around two major topical areas and six subtopic areas: 1) Identifying and mitigating coastal pollutants, including fecal pollution, nutrients and harmful algal blooms, and microplastics; and 2) Resilient coastal ecosystems, which focuses on coastal fisheries, shellfish and natural and nature-based features (NNBF). Societal needs and the tools and technologies needed to address them are discussed for each subtopic. Recommendations for scientific research, observations, community engagement, and policies aim to help prioritize future research and investments. A better understanding of coastal physical processes and interactions with coastal pollutants and resilient ecosystems (e.g. fate and transport, circulation, depositional environment, climate change) is a critical need. Other research recommendations include the need to quantify potential threats to human and ecosystem health through accurate risk assessments and to quantify the resulting hazard risk reduction of natural and nature-based features; improve pollutant and ecosystem impacts forecasting by integrating frequent and new data points into existing and novel models; collect environmental data to calibrate and validate models to predict future impacts on coastal ecosystems and their evolution due to anthropogenic stressors (land-based pollution, overfishing, coastal development), climate change, and sea level rise; and develop lower cost and rapid response tools to help coastal managers better respond to pollutant and ecosystem threats. 
    more » « less