skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The first ice-free day in the Arctic Ocean could occur before 2030
Abstract Projections of a sea ice-free Arctic have so far focused on monthly-mean ice-free conditions. We here provide the first projections of when we could see the first ice-free day in the Arctic Ocean, using daily output from multiple CMIP6 models. We find that there is a large range of the projected first ice-free day, from 3 years compared to a 2023-equivalent model state to no ice-free day before the end of the simulations in 2100, depending on the model and forcing scenario used. Using a storyline approach, we then focus on the nine simulations where the first ice-free day occurs within 3–6 years, i.e. potentially before 2030, to understand what could cause such an unlikely but high-impact transition to the first ice-free day. We find that these early ice-free days all occur during a rapid ice loss event and are associated with strong winter and spring warming.  more » « less
Award ID(s):
1847398
PAR ID:
10558367
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract State‐of‐the‐art climate models simulate a large spread in the projected decline of Arctic sea‐ice area (SIA) over the 21st century. Here we diagnose causes of this intermodel spread using a simple model that approximates future SIA based on present SIA and the sensitivity of SIA to Arctic temperatures. This model accounts for 70%–95% of the intermodel variance, with the majority of the spread arising from present‐day biases. The remaining spread arises from intermodel differences in Arctic warming, with some contribution from differences in the local sea‐ice sensitivity. Using observations to constrain the projections moves the probability of an ice‐free Arctic forward by 10–35 years when compared to unconstrained projections. Under a high‐emissions scenario, an ice‐free Arctic will likely (66% probability) occur between 2036 and 2056 in September and between 2050 and 2068 from July to October. Under a medium‐emissions scenario, the “likely” date occurs between 2040 and 2062 in September and much later in the 21st century from July to October. 
    more » « less
  2. Abstract The Last Ice Area—located to the north of Greenland and the northern Canadian Arctic Archipelago—is expected to persist as the central Arctic Ocean becomes seasonally ice-free within a few decades. Projections of the Last Ice Area, however, have come from relatively low resolution Global Climate Models that do not resolve sea ice export through the waterways of the Canadian Arctic Archipelago and Nares Strait. Here we revisit Last Ice Area projections using high-resolution numerical simulations from the Community Earth System Model, which resolves these narrow waterways. Under a high-end forcing scenario, the sea ice of the Last Ice Area thins and becomes more mobile, resulting in a large export southward. Under this potentially worst-case scenario, sea ice of the Last Ice Area could disappear a little more than one decade after the central Arctic Ocean has reached seasonally ice-free conditions. This loss would have profound impacts on ice-obligate species. 
    more » « less
  3. Abstract Earth system models are valuable tools for understanding how the Arctic snow‐ice system and the feedbacks therein may respond to a warming climate. In this analysis, we investigate snow on Arctic sea ice to better understand how snow conditions may change under different forcing scenarios. First, we use in situ, airborne, and satellite observations to assess the realism of the Community Earth System Model (CESM) in simulating snow on Arctic sea ice. CESM versions one and two are evaluated, with V1 being the Large Ensemble experiment (CESM1‐LE) and V2 being configured with low‐ and high‐top atmospheric components. The assessment shows CESM2 underestimates snow depth and produces overly uniform snow distributions, whereas CESM1‐LE produces a highly variable, excessively‐thick snow cover. Observations indicate that snow in CESM2 accumulates too slowly in autumn, too quickly in winter‐spring, and melts too soon and rapidly in late spring. The 1950–2050 trends in annual mean snow depths are markedly smaller in CESM2 (−0.8 cm decade−1) than in CESM1‐LE (−3.6 cm decade−1) due to CESM2 having less snow overall. A perennial, thick sea‐ice cover, cool summers, and excessive summer snowfall facilitate a thicker, longer‐lasting snow cover in CESM1‐LE. Under the SSP5‐8.5 forcing scenario, CESM2 shows that, compared to present‐day, snow on Arctic sea ice will: (1) undergo enhanced, earlier spring melt, (2) accumulate less in summer‐autumn, (3) sublimate more, and (4) facilitate marginally more snow‐ice formation. CESM2 also reveals that summers with snow‐free ice can occur ∼30–60 years before an ice‐free central Arctic, which may promote faster sea‐ice melt. 
    more » « less
  4. Abstract Observations show Arctic sea ice has declined and midlatitude storminess has weakened during Northern Hemisphere (NH) summertime. It is currently unclear whether Arctic sea ice loss impacts summertime storminess because most previous work focuses on other seasons. Here we quantify the impact of Arctic sea ice loss on NH summertime storminess using equilibrium and transient climate model simulations. The equilibrium simulations show mid‐to‐late 21st century Arctic sea ice loss weakens summertime storminess, but only in the presence of ocean coupling. With ocean coupling, the equator‐to‐pole temperature and atmospheric energy gradients significantly weaken due to increased surface turbulent flux in the polar region following Arctic sea ice loss. The transient simulations show Arctic sea ice loss does not significantly weaken summertime storminess until the late 21st century. Furthermore, Arctic Amplification, which is dominated by Arctic sea ice loss in the present day, does not significantly impact the present‐day weakening of summertime storminess. 
    more » « less
  5. This dataset are produced by a manuscript (Biodegradation of Ancient Organic Carbon Fuels Seabed Methane Emission at the Arctic Continental Shelves)  to be submitted to the Journal of Geophysical Research - Global Biogeochemical Cycles.  I The file "MethaneEmission_Permafrost" contains the predicted  temperature, pressure, pore water salinity, ice stable zone, methane hydrate stable zone, ice saturation, methane hydrate saturation, free methane gas saturation, labile organic carbon content, stable organic carbon content, and methanogenesis rate from seafloor to 1200 m depth from 18,000 years before present to 2,000 years after present for 8 different simulation scenarios.  The file "Seabed_Methane_Flux" contains the predicted seabed methane emission rate from 18,000 years before present to 2,000 years after present for 8 different simulation scenarios.  Detailed information about the model could be found in the paper Biodegradation of Ancient Organic Carbon Fuels Seabed Methane Emission at the Arctic Continental Shelves.    
    more » « less