skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Market Penetration Rate Optimization for Mobility Benefits of Connected Vehicles: A Bayesian Optimization Approach
The advancements of connected vehicle (CV) technologies promise significant safety, mobility, and environmental benefits for future transportation systems. These benefits will largely rely on the market penetration rate (MPR) of CVs and connected infrastructure. However, higher MPR is not guaranteed to result in greater benefits in a transportation system in some cases even if we do not consider the deployment cost of CVs. Therefore, understanding the optimal CV MPR to achieve the best system benefits is informative and can provide some guidance for transportation agencies to use appropriate incentives or other policies to potentially affect the speed of CV adoption. Instead of using the traditional incremental method, this paper proposed a simulation-based approach combined with Bayesian optimization to determine the optimal CV MPR that achieves the highest performance benefits for a freeway segment. The proposed methodology is tested in the I-210 E (in California, U.S.) simulation freeway segment built and calibrated in Simulation of Urban Mobility software as a case study. The weighted sum of the average total travel time on the mainline and the average queue length of on-ramps is formulated as the objective function to optimize the CV MPR. Different weight combinations are tested as different scenarios. The optimization results of these scenarios show that, when the weight of total travel time is high, the optimal CV MPR tends to be high. On the contrary, when the weight of queue length increases, higher CV MPRs may not guarantee higher benefits for the traffic system. The globally optimal CV MPR can be as low as 3%. The case study also confirms the effectiveness of optimizing the CV MPR based on microsimulation and Bayesian optimization.  more » « less
Award ID(s):
1949710
PAR ID:
10558586
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Sage
Date Published:
Journal Name:
Transportation Research Record: Journal of the Transportation Research Board
ISSN:
0361-1981
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Connected Vehicle (CV) technologies are under rapid deployment across the globe and will soon reshape our transportation systems, bringing benefits to mobility, safety, environment, etc. Meanwhile, such technologies also attract attention from cyberattacks. Recent work shows that CV-based Intelligent Traffic Signal Control Systems are vulnerable to data spoofing attacks, which can cause severe congestion effects in intersections. In this work, we explore a general detection strategy for infrastructure-side CV applications by estimating the trustworthiness of CVs based on readily-available infrastructureside sensors. We implement our detector for the CV-based traffic signal control and evaluate it against two representative congestion attacks. Our evaluation in the industrial-grade traffic simulator shows that the detector can detect attacks with at least 95% true positive rates while keeping false positive rate below 7% and is robust to sensor noises. 
    more » « less
  2. null (Ed.)
    Connected and automated vehicles (CAVs) will undoubtedly transform many aspects of transportation systems in the future. In the meantime, transportation agencies must make investment and policy decisions to address the future needs of the transportation system. This research provides much-needed guidance for agencies about planning-level capacities in a CAV future and quantify Highway Capacity Manual (HCM) capacities as a function of CAV penetration rates and vehicle behaviors such as car-following, lane change, and merge. As a result of numerous uncertainties on CAV implementation policies, the study considers many scenarios including variations in parameters (including CAV gap/headway settings), roadway geometry, and traffic characteristics. More specifically, this study considers basic freeway, freeway merge, and freeway weaving segments in which various simulation scenarios are evaluated using two major CAV applications: cooperative adaptive cruise control and advanced merging. Data from microscopic traffic simulation are collected to develop capacity adjustment factors for CAVs. Results show that the existence of CAVs in the traffic stream can significantly enhance the roadway capacity (by as much as 35% to 40% under certain cases), not only on basic freeways but also on merge and weaving segments, as the CAV market penetration rate increases. The human driver behavior of baseline traffic also affects the capacity benefits, particularly at lower CAV market penetration rates. Finally, tables of capacity adjustment factors and corresponding regression models are developed for HCM implementation of the results of this study. 
    more » « less
  3. While there has been significant progress on statistical theories in the information community, there is a lack of studies in information-theoretic distributed resource allocation to maximize information gain. With advanced technologies of unmanned aerial vehicles (UAVs) in response to corresponding revised FAA regulations, this study focuses on developing a new framework for utilizing UAVs in incident management. As a result of new computing technologies, predictive decision-making studies have recently improved ERV allocations for a sequence of incidents; however, these ground-based operations do not simultaneously capture network-wide information. This study incorporates a real-time aerial view using UAVs with three key improvements. First, aerial observations update the status of the freeway shoulder, allowing an ERV to safely travel at full speed. Second, observing parameters of the congestion shockwave provides accurate measurements of the true impact of an incident. Third, real-time information can be gathered on the clearance progress of an incident scene. We automate UAV and ERV allocation while satisfying constraints between these vehicles using a distributed constraint optimization problem (DCOP) framework. To find the optimal assignment of vehicles, the proposed model is formulated and solved using the Max-Sum approach. The system utility convergence is presented for different scenarios of grid size, number of incidents, and number of vehicles. We also present the solution of our model using the Distributed Stochastic Algorithm (DSA). DSA with exploration heuristics outperformed the Max-Sum algorithm when probability threshold p=0.5 but degrades for higher values of p. 
    more » « less
  4. Urban heat exposure is an increasing health risk among urban dwellers. Many cities are considering accommodating active mobility, especially walking and biking, to reduce greenhouse gas emissions. However, promoting active mobility without proper planning and transportation infrastructure to combat extreme heat exposure may cause more heat-related morbidity and mortality, particularly in future with projected climate change. This study estimated the effectiveness of active trip heat exposure mitigation under built environment and travel behavior change. Simulations of the Phoenix metro region's 624,987 active trips were conducted using the activity-based travel model (ABM), mean radiant temperature (T MRT , net human radiation exposure), transportation network, and local climate zones. Two scenarios were designed to reduce traveler exposure: one that focuses on built environment change (making neighborhoods cooler) and the other on travel behavior (switching from shorter travel time but higher exposure routes to longer travel time but cooler routes) change. Travelers experienced T MRT heat exposure ranging from 29°C to 76°C (84°F to 168°F) without environmental or behavioral change. Active trip T MRT exposures were reduced by an average of 1.2–3.7°C when the built environment was changed from a hotter to cooler design. Behavioral changes cooled up to 10 times more trips than changes in built environment changes. The marginal benefit of cooling decreased as the number of cooled corridors transformed increased. When the most traveled 10 km of corridors were cooled, the marginal benefit affected over 1,000 trips/km. However, cooling all corridors results in marginal benefits as low as 1 trip/km. The results reveal that heavily traveled corridors should be prioritized with limited resources, and the best cooling results come from environment and travel behavior change together. The results show how to surgically invest in travel behavior and built environment change to most effectively protect active travelers. 
    more » « less
  5. Optimal design under uncertainty remains a fundamental challenge in advancing reliable, next-generation process systems. Robust optimization (RO) offers a principled approach by safeguarding against worst-case scenarios across a range of uncertain parameters. However, traditional RO methods typically require known problem structure, which limits their applicability to high-fidelity simulation environments. To overcome these limitations, recent work has explored robust Bayesian optimization (RBO) as a flexible alternative that can accommodate expensive, black-box objectives. Existing RBO methods, however, generally ignore available structural information and struggle to scale to high-dimensional settings. In this work, we introduce BONSAI (Bayesian Optimization of Network Systems under uncertAInty), a new RBO framework that leverages partial structural knowledge commonly available in simulation-based models. Instead of treating the objective as a monolithic black box, BONSAI represents it as a directed graph of interconnected white- and black-box components, allowing the algorithm to utilize intermediate information within the optimization process. We further propose a scalable Thompson sampling-based acquisition function tailored to the structured RO setting, which can be efficiently optimized using gradient-based methods. We evaluate BONSAI across a diverse set of synthetic and real-world case studies, including applications in process systems engineering. Compared to existing simulation-based RO algorithms, BONSAI consistently delivers more sample-efficient and higher-quality robust solutions, highlighting its practical advantages for uncertainty-aware design in complex engineering systems. 
    more » « less