skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum Measurement Classification Using Statistical Learning
Interpreting the results of a quantum computer can pose a significant challenge due to inherent noise in these mesoscopic quantum systems. Quantum measurement, a critical component of quantum computing, involves determining the probabilities linked with quantum states post-multiple circuit computations based on quantum readout values provided by hardware. While there are promising classification-based solutions, they can either misclassify or necessitate excessive measurements, thereby proving to be costly. This article puts forth an efficient method to discern the quantum state by analyzing the probability distributions of data post-measurement. Specifically, we employ cumulative distribution functions to juxtapose the measured distribution of a sample against the distributions of basis states. The efficacy of our approach is demonstrated through experimental results on a superconducting transmon qubit architecture, which shows a substantial decrease (88%) in single qubit readout error compared to state-of-the-art measurement techniques. Moreover, we report additional error reduction (12%) compared to state-of-the-art measurement techniques when our technique is applied to enhance existing multi-qubit classification techniques. We also demonstrate the applicability of our proposed method for higher dimensional quantum systems, including classification of single qutrits as well as multiple qutrits.  more » « less
Award ID(s):
1908131
PAR ID:
10559054
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Quantum Computing
Volume:
5
Issue:
2
ISSN:
2643-6809
Page Range / eLocation ID:
1 to 16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We demonstrate high fidelity repetitive projective measurements of nuclear spin qubits in an array of neutral ytterbium-171 (171Yb) atoms. We show that the qubit state can be measured with a fidelity of 0.995(4) under a condition that leaves it in the state corresponding to the measurement outcome with a probability of 0.993(6) for a single tweezer and 0.981(4) averaged over the array. This is accomplished by near-perfect cyclicity of one of the nuclear spin qubit states with an optically excited state under a magnetic field of B=58 G, resulting in a bright/dark contrast of ≈105 during fluorescence readout. The performance improves further as ∼1/B2. The state-averaged readout survival of 0.98(1) is limited by off-resonant scattering to dark states and can be addressed via post-selection by measuring the atom number at the end of the circuit, or during the circuit by performing a measurement of both qubit states. We combine projective measurements with high-fidelity rotations of the nuclear spin qubit via an AC magnetic field to explore several paradigmatic scenarios, including the non-commutivity of measurements in orthogonal bases, and the quantum Zeno mechanism in which measurements "freeze" coherent evolution. Finally, we employ real-time feedforward to repetitively deterministically prepare the qubit in the +z or −z direction after initializing it in an orthogonal basis and performing a projective measurement in the z-basis. These capabilities constitute an important step towards adaptive quantum circuits with atom arrays, such as in measurement-based quantum computation, fast many-body state preparation, holographic dynamics simulations, and quantum error correction. 
    more » « less
  2. The ability to make high-fidelity qubit measurements with minimal collateral disruption to the system is not only relevant to initialization and final read-out -- it is also essential to achieving quantum error correction on a universal quantum computation. Qubit state measurements in a neutral atom array are achieved by probing the array with light detuned from a cycling transition and capturing resulting fluorescence with a high quantum efficiency imaging device, producing a greyscale image of the neutral atom array. Conventionally, to achieve a fidelity above 99%, the typical probing period is several ms. This is a significant delay, given that the longest gate operation only takes several micros. In this poster, we demonstrate qubit state measurements assisted by a supervised convolutional neural network (CNN) in a neutral atom quantum processor. We present two CNN architectures for analyzing neutral atom qubit readout data: a compact 5-layer single-qubit CNN architecture and a 6-layer multi-qubit CNN architecture. We benchmark both architectures against a conventional Gaussian threshold analysis method. We demonstrate up to 56% reduction of measurement infidelity using the CNN compared to a conventional analysis method. This work presents a proof of concept for a CNN network to be implemented as a real-time readout processing method on a neutral atom quantum computer, enabling faster readout time and improved fidelity. 
    more » « less
  3. null (Ed.)
    Abstract Semiconductor quantum-dot spin qubits are a promising platform for quantum computation, because they are scalable and possess long coherence times. In order to realize this full potential, however, high-fidelity information transfer mechanisms are required for quantum error correction and efficient algorithms. Here, we present evidence of adiabatic quantum-state transfer in a chain of semiconductor quantum-dot electron spins. By adiabatically modifying exchange couplings, we transfer single- and two-spin states between distant electrons in less than 127 ns. We also show that this method can be cascaded for spin-state transfer in long spin chains. Based on simulations, we estimate that the probability to correctly transfer single-spin eigenstates and two-spin singlet states can exceed 0.95 for the experimental parameters studied here. In the future, state and process tomography will be required to verify the transfer of arbitrary single qubit states with a fidelity exceeding the classical bound. Adiabatic quantum-state transfer is robust to noise and pulse-timing errors. This method will be useful for initialization, state distribution, and readout in large spin-qubit arrays for gate-based quantum computing. It also opens up the possibility of universal adiabatic quantum computing in semiconductor quantum-dot spin qubits. 
    more » « less
  4. Entanglement is essential for quantum information processing, but is limited by noise. We address this by developing high-yield entanglement distillation protocols with several advancements. (1) We extend the 2-to-1 recurrence entanglement distillation protocol to higher-rate n-to-(n−1) protocols that can correct any single-qubit errors. These protocols are evaluated through numerical simulations focusing on fidelity and yield. We also outline a method to adapt any classical error-correcting code for entanglement distillation, where the code can correct both bit-flip and phase-flip errors by incorporating Hadamard gates. (2) We propose a constant-depth decoder for stabilizer codes that transforms logical states into physical ones using single-qubit measurements. This decoder is applied to entanglement distillation protocols, reducing circuit depth and enabling protocols derived from high-performance quantum error-correcting codes. We demonstrate this by evaluating the circuit complexity for entanglement distillation protocols based on surface codes and quantum convolutional codes. (3) Our stabilizer entanglement distillation techniques advance quantum computing. We propose a fault-tolerant protocol for constant-depth encoding and decoding of arbitrary states in surface codes, with potential extensions to more general quantum low-density parity-check codes. This protocol is feasible with state-of-the-art reconfigurable atom arrays and surpasses the limits of conventional logarithmic depth encoders. Overall, our study integrates stabilizer formalism, measurement-based quantum computing, and entanglement distillation, advancing both quantum communication and computing. 
    more » « less
  5. We generate ultrabroadband photon pairs entangled in both polarization and frequency bins through an all-waveguided Sagnac source covering the entire optical C- and L-bands (1530–1625 nm). We perform comprehensive characterization of high-fidelity states in multiple dense wavelength-division multiplexed channels, achieving full tomography of effective four-qubit systems. Additionally, leveraging the inherent high dimensionality of frequency encoding and our electro-optic measurement approach, we demonstrate the scalability of our system to higher dimensions, reconstructing states in a 36-dimensional Hilbert space consisting of two polarization qubits and two frequency-bin qutrits. Our findings hold potential significance for quantum networking, particularly dense coding and entanglement distillation in wavelength-multiplexed quantum networks. 
    more » « less