skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diverse RNA viruses discovered in multiple seagrass species
Seagrasses are marine angiosperms that form highly productive and diverse ecosystems. These ecosystems, however, are declining worldwide. Plant-associated microbes affect critical functions like nutrient uptake and pathogen resistance, which has led to an interest in the seagrass microbiome. However, despite their significant role in plant ecology, viruses have only recently garnered attention in seagrass species. In this study, we produced original data and mined publicly available transcriptomes to advance our understanding of RNA viral diversity inZostera marina,Zostera muelleri,Zostera japonica, andCymodocea nodosa. InZ.marina, we present evidence for additional Zostera marina amalgavirus 1 and 2 genotypes, and a complete genome for an alphaendornavirus previously evidenced by an RNA-dependent RNA polymerase gene fragment. InZ.muelleri, we present evidence for a second complete alphaendornavirus and near complete furovirus. Both are novel, and, to the best of our knowledge, this marks the first report of a furovirus infection naturally occurring outside of cereal grasses. InZ.japonica, we discovered genome fragments that belong to a novel strain of cucumber mosaic virus, a prolific pathogen that depends largely on aphid vectoring for host-to-host transmission. Lastly, inC.nodosa, we discovered two contigs that belong to a novel virus in the familyBetaflexiviridae. These findings expand our knowledge of viral diversity in seagrasses and provide insight into seagrass viral ecology.  more » « less
Award ID(s):
2049225 2219547
PAR ID:
10559215
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Ghorbani, Abozar
Publisher / Repository:
PLoS One
Date Published:
Journal Name:
PLOS ONE
Volume:
19
Issue:
8
ISSN:
1932-6203
Page Range / eLocation ID:
e0302314
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Seagrasses are a polyphyletic group of marine flowering plants that play crucial roles in nearshore ecology, yet their interactions with viruses remain largely unexplored. This study presents the construction and characterization of an infectious cDNA clone of the potexvirus turtle grass virus X (TGVX). The complete genome of this positive-sense single-stranded RNA virus was amplified from field samples ofThalassia testudinumand assembled into a pLX-based mini binary vector using a multi-fragment directional cloning strategy, resulting in the infectious clone pLX-TGVX. Agroinfection assays of potexvirus-freeT. testudinumplants resulted in systemic infections by TGVX, as confirmed by multiplex RT-PCR experiments and phenotypic changes reflecting virus-induced symptoms. Ultrastructural studies also demonstrated significant cytopathological changes resulting from TGVX infection, including chloroplast swelling, reduced thylakoid grana, and the presence of viral replication organelles and filamentous virus-like particles. The development of the TGVX infectious clone offers a novel tool for investigating the impact of this virus on seagrass health and productivity. This study demonstrates the first successful agroinfection of a marine plant with an infectious clone, creating a new avenue for studying viruses identified through sequence-based surveys and paving the way for exploring the ecological significance of viral infection in these critical marine ecosystems.IMPORTANCEThis study pioneers the construction of an infectious clone of turtle grass virus X and describes its application in the natural marine plant host,Thalassia testudinum. The creation of this infectious clone not only provides a valuable tool for marine plant virology research but also opens new avenues for exploring the influence of viral infections on the health and productivity of seagrass meadows. Given that seagrasses play a crucial role in sediment stabilization, nutrient cycling, and habitat provisioning, understanding the impact of viruses on these ecosystems is essential for their effective conservation and management. This methodological advance enables detailed studies of viral replication, virus-host interactions, and the broader ecological implications of viral infections in marine plants. 
    more » « less
  2. Turtlegrass virus X, which infects the seagrass Thalassia testudinum, is the only potexvirus known to infect marine flowering plants. We investigated potexvirus distribution in seagrasses using a degenerate reverse transcription polymerase chain reaction (RT-PCR) assay originally designed to capture potexvirus diversity in terrestrial plants. The assay, which implements Potex-5 and Potex-2RC primers, successfully amplified a 584 nt RNA-dependent RNA polymerase (RdRp) fragment from TVX-infected seagrasses. Following validation, we screened 74 opportunistically collected, apparently healthy seagrass samples for potexviruses using this RT-PCR assay. The survey examined the host species T. testudinum, Halodule wrightii, Halophila stipulacea, Syringodium filiforme, Ruppia maritima, Zostera marina. Potexvirus PCR products were successfully generated only from T. testudinum samples and phylogenetic analysis of sequenced PCR products revealed five distinct TVX sequence variants. Although the RT-PCR assay revealed limited potexvirus diversity in seagrasses, the expanded geographic distribution of TVX shown here emphasizes the importance of future studies to investigate T. testudinum populations across its native range and understand how the observed fine-scale genetic diversity affects host-virus interactions. 
    more » « less
  3. Abstract BackgroundSeagrasses are globally distributed marine flowering plants that play foundational roles in coastal environments as ecosystem engineers. While research efforts have explored various aspects of seagrass-associated microbial communities, including describing the diversity of bacteria, fungi and microbial eukaryotes, little is known about viral diversity in these communities. ResultsTo begin to address this, we leveraged metagenomic sequencing data to generate a catalog of bacterial metagenome-assembled genomes (MAGs) and phage genomes from the leaves of the seagrass,Zostera marina. We expanded the robustness of this viral catalog by incorporating publicly available metagenomic data from seagrass ecosystems. The final MAG set represents 85 high-quality draft and 62 medium-quality draft bacterial genomes. While the viral catalog represents 354 medium-quality, high-quality, and complete viral genomes. Predicted auxiliary metabolic genes in the final viral catalog had putative annotations largely related to carbon utilization, suggesting a possible role for phage in carbon cycling in seagrass ecosystems. ConclusionsThese genomic resources provide initial insight into bacterial-viral interactions in seagrass meadows and are a foundation on which to further explore these critical interkingdom interactions. These catalogs highlight a possible role for viruses in carbon cycling in seagrass beds which may have important implications for blue carbon management and climate change mitigation. 
    more » « less
  4. Abstract Fungi play pivotal roles in terrestrial ecosystems as decomposers, pathogens, and endophytes, yet their significance in marine environments is often understudied. Seagrasses, as globally distributed marine flowering plants, have critical ecological functions, but knowledge about their associated fungal communities remains relatively limited. Previous amplicon surveys of the fungal community associated with the seagrass,Zostera marinahave revealed an abundance of potentially novel chytrids. In this study, we employed deep metagenomic sequencing to extract metagenome-assembled genomes (MAGs) from these chytrids and other microbial eukaryotes associated withZ. marinaleaves. Our efforts resulted in the recovery of five eukaryotic MAGs, including a single fungal MAG in the order Loubulomycetales (65% BUSCO completeness), three MAGs representing diatoms in the family Bacillariaceae (93%, 70% and 31% BUSCO completeness) and a single MAG representing a haptophyte algae in the genusPrymnesium(40% BUSCO completeness). Whole-genome phylogenomic assessment of these MAGs suggests they all largely represent under sequenced, and possibly novel eukaryotic lineages. Of particular interest, the chytrid MAG was placed within the order Lobulomycetales, consistent with the identity of the dominant chytrid from previousZ. marinaamplicon survey results. Annotation of this MAG yielded 5,650 gene models of which 77% shared homology to current databases. With-in these gene models, we predicted 121 carbohydrate-active enzymes and 393 secreted proteins (103 cytoplasmic effectors, 30 apoplastic effectors). Exploration of orthologs between the Lobulomycetales MAG and existing Chytridiomycota genomes have revealed a landscape of high-copy gene families related to host recognition and interaction. Further machine learning analyses based on carbohydrate-active enzyme composition predict that this MAG is a symbiont. Overall, these five eukaryotic MAGs represent substantial genomic novelty and valuable community resources, contributing to a deeper understanding of the roles of fungi and other microbial eukaryotes in the larger seagrass ecosystem. 
    more » « less
  5. ABSTRACT We examine the role of physical structure versus biotic interactions in structuring host‐associated microbial communities on a marine angiosperm,Zostera marina, eelgrass. Across several months and sites, we compared microbiomes on physical mimics of eelgrass roots and leaves to those on intact plants. We find large, consistent differences in the microbiome of mimics and plants, especially on roots, but also on leaves. Key taxa that are more abundant on leaves have been associated with microalgal and macroalgal disease and merit further investigation to determine their role in mediating plant–microalgal–pathogen interactions. Root associated taxa were associated with sulphur and nitrogen cycling, potentially ameliorating environmental stresses for the plant. Our work identifies targets for future work on the functional role of the seagrass microbiome in promoting the success of these angiosperms in the sea through identifying components of microbial communities that are specific to seagrasses. 
    more » « less