skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: HarvestGRID: high-resolution harvested crop areas of the United States from 1981 to 2019
Abstract The United States is a major producer and exporter of agricultural goods, fulfilling global demands for food, fiber, and fuel while generating substantial economic benefits. Agriculture in the U.S. not only dominates land use but also ranks as the largest water-consuming sector. High-resolution cropland mapping and insights into cultivation trends are essential to enhance sustainable management of land and water resources. Existing data sources present a trade-off between temporal breadth and spatial resolution, leading to gaps in detailed geographic crop distribution. To bridge this gap, we adopted a data-fusion methodology that leverages the advantages of various data sources, including county-level data from the U.S. Department of Agriculture, along with several gridded land use datasets. This approach enabled us to create annual maps, termed HarvestGRID, of irrigated and harvested areas for 30 key crops across the U.S. from 1981 to 2019 at a resolution of 2.5 arc minutes. Over the past four decades, irrigated harvested area has remained relatively stable nationally; however, several western states exhibit a declining trend, while some eastern states show an upward trend. Notably, more than 50% of the irrigated land in the U.S. lies above three major aquifers: the High Plains, Central Valley, and Mississippi Embayment Aquifers. We assessed the accuracy of HarvestGRID by comparing it with other large-scale gridded cropland databases, identifying both consistencies and discrepancies across different years, regions, and crops. This dataset is pivotal for analyzing long-term cropland use patterns and supports the advancement of more sustainable agricultural practices.  more » « less
Award ID(s):
2108196 2144169
PAR ID:
10559281
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research: Food Systems
Volume:
2
Issue:
1
ISSN:
2976-601X
Format(s):
Medium: X Size: Article No. 015006
Size(s):
Article No. 015006
Sponsoring Org:
National Science Foundation
More Like this
  1. Crop production is among the most extensive human activities on the planet – with critical importance for global food security, land use, environmental burden, and climate. Yet despite the key role that croplands play in global land use and Earth systems, there remains little understanding of how spatial patterns of global crop cultivation have recently evolved and which crops have contributed most to these changes. Here we construct a new data library of subnational crop-specific irrigated and rainfed harvested area statistics and combine it with global gridded land cover products to develop a global gridded (5-arcminute) irrigated and rainfed cropped area (MIRCA-OS) dataset for the years 2000 to 2015 for 23 crop classes. These global data products support critical insights into the spatially detailed patterns of irrigated and rainfed cropland change since the start of the century and provide an improved foundation for a wide array of global assessments spanning agriculture, water resource management, land use change, climate impact, and sustainable development. 
    more » « less
  2. Efficient irrigation technologies, which seem to promise reduced production costs and water consumption in heavily irrigated areas, may instead be driving increased irrigation use in areas that were not traditionally irrigated. As a result, the total dependence on supplemental irrigation for crop production and revenue is steadily increasing across the contiguous United States. Quantifying this dependence has been hampered by a lack of comprehensive irrigated and dryland yield and harvested area data outside of major irrigated regions, despite the importance and long history of irrigation applications in agriculture. This study used a linear regression model to disaggregate lumped agricultural statistics and estimate average irrigated and dryland yields at the state level for five major row crops: corn, cotton, hay, soybeans, and wheat. For 1945–2015, we quantified crop production, irrigation enhancement revenue, and irrigated and dryland areas in both intensively irrigated and marginally-dependent states, where both irrigated and dryland farming practices are implemented. In 2015, we found that irrigating just the five commodity crops enhanced revenue by ~$7 billion across all states with irrigation. In states with both irrigated and dryland practices, 23% of total produced area relied on irrigation, resulting in 7% more production than from dryland practices. There was a clear response to increasing biofuel demand, with the addition of more than 3.6 million ha of irrigated corn and soybeans in the last decade in marginally-dependent states. Since 1945, we estimate that yield enhancement due to irrigation has resulted in over $465 billion in increased revenue across the contiguous United States (CONUS). Example applications of this dataset include estimating historical water use, evaluating the effects of environmental policies, developing new resource management strategies, economic risk analyses, and developing tools for farmer decision making. 
    more » « less
  3. Agricultural activities have been recognized as an important driver of land cover and land use change (LCLUC) and have significantly impacted the ecosystem feedback to climate by altering land surface properties. A reliable historical cropland distribution dataset is crucial for understanding and quantifying the legacy effects of agriculture-related LCLUC. While several LCLUC datasets have the potential to depict cropland patterns in the conterminous US, there remains a dearth of a relatively high-resolution datasets with crop type details over a long period. To address this gap, we reconstructed historical cropland density and crop type maps from 1850 to 2021 at a resolution of 1 km × 1 km by integrating county-level crop-specific inventory datasets, census data, and gridded LCLUC products. Different from other databases, we tracked the planting area dynamics of all crops in the US, excluding idle and fallow farm land and cropland pasture. The results showed that the crop acreages for nine major crops derived from our map products are highly consistent with the county-level inventory data, with a residual less than 0.2×103 ha (0.2 kha) in most counties (>75 %) during the entire study period. Temporally, the US total crop acreage has increased by 118×106 ha (118 Mha) from 1850 to 2021, primarily driven by corn (30 Mha) and soybean (35 Mha). Spatially, the hot spots of cropland distribution shifted from the Eastern US to the Midwest and the Great Plains, and the dominant crop types (corn and soybean) expanded northwestward. Moreover, we found that the US cropping diversity experienced a significant increase from the 1850s to the 1960s, followed by a dramatic decline in the recent 6 decades under intensified agriculture. Generally, this newly developed dataset could facilitate spatial data development, with respect to delineating crop-specific management practices, and enable the quantification of cropland change impacts on the environment. Annual cropland density and crop type maps are available at https://doi.org/10.6084/m9.figshare.22822838.v2 (Ye et al., 2023). 
    more » « less
  4. Abstract Groundwater extraction in the United States (US) is unsustainable, making it essential to understand the impacts of limited water use on irrigated agriculture. To improve this understanding, we integrated a gridded crop model with satellite observations, recharge estimates, and water survey data to assess the effects of sustainable groundwater withdrawals on US irrigated agricultural production. The gridded crop model agrees with satellite‐based estimates of evapotranspiration (R2 = 0.68), as well as survey data from the United States Department of Agriculture (R2 = 0.82–0.94 for county‐level production and 0.37–0.54 for county‐level yield). Using the optimistic assumption that groundwater extraction equals effective aquifer recharge rate, we find that sustainable groundwater use decreases US irrigated production of maize, soybean, and winter wheat by 20%, 6%, and 25%, respectively. Using a more conservative assumption of groundwater availability, US irrigated production of maize, soybean, and winter wheat decreases by 45%, 37%, and 36%, respectively. The wide range of simulated losses is driven by considerable uncertainty in surface water and groundwater interactions, as well as accounting for the many aspects of sustainability. Our results demonstrate the vulnerability of US irrigated agriculture to unsustainable groundwater pumping, highlighting the difficulty of expanding or even maintaining irrigated food production in the face of climate change, population growth, and shifting dietary demands. These findings are based on reducing pumping by fallowing irrigated farmland; however, alternate pumping reduction strategies or technological advances in crop genetics and irrigation could produce different results. 
    more » « less
  5. Abstract Irrigated agriculture depends on surface water and groundwater, but we do not have a clear picture of how much water is consumed from these sources by different crops across the US over time. Current estimates of crop water consumption are insufficient in providing the spatial granularity and temporal depth required for comprehensive long‐term analysis. To fill this data gap, we utilized crop growth models to quantify the monthly crop water consumption ‐ distinguishing between rainwater, surface water, and groundwater ‐ of the 30 most widely irrigated crops in the US from 1981 to 2019 at 2.5 arc min. These 30 crops represent approximately 95% of US irrigated cropland. We found that the average annual total crop water consumption for these 30 irrigated crops in the US was 154.2 km3, 70% of which was from irrigation. Corn and alfalfa accounted for approximately 16.7 and 24.8 km3of average annual blue crop water consumption, respectively, which is nearly two‐fifths of the blue crop water consumed in the US. Surface water consumption decreased by 41.2%, while groundwater consumption increased by 6.8%, resulting in a 17.3% decline in blue water consumption between 1981 and 2019. We find good agreement between our results and existing modeled evapotranspiration (ET) products, remotely sensed ET estimates (OpenET), and water use data from the US Geological Survey and US Department of Agriculture. Our data set and model can help assess the impact of irrigation practices and water scarcity on crop production and sustainability. 
    more » « less