By integrating multi-source cross-scale inventories and satellite-based datasets, we reconstructed the annual crop density and crop type map (excluding summer idle/fallow, cropland pasture) in the contiguous US at 1km×1km resolution from 1850 to 2021. The annual crop density map depicts the distribution and fraction of cultivated land, while the crop type map displays the corresponding crop type. The developed datasets fill the data gap in lacking of crop type extent and type maps, which can support the environmental assessment and socioeconomic analysis related to agricultural activities. (Supplement to: Shuchao, Ye et al. (2023): Annual time-series 1-km maps of crop area and types in the conterminous US (CropAT-US): cropping diversity changes during 1850-2021.)
more »
« less
Annual time-series 1 km maps of crop area and types in the conterminous US (CropAT-US): cropping diversity changes during 1850–2021
Agricultural activities have been recognized as an important driver of land cover and land use change (LCLUC) and have significantly impacted the ecosystem feedback to climate by altering land surface properties. A reliable historical cropland distribution dataset is crucial for understanding and quantifying the legacy effects of agriculture-related LCLUC. While several LCLUC datasets have the potential to depict cropland patterns in the conterminous US, there remains a dearth of a relatively high-resolution datasets with crop type details over a long period. To address this gap, we reconstructed historical cropland density and crop type maps from 1850 to 2021 at a resolution of 1 km × 1 km by integrating county-level crop-specific inventory datasets, census data, and gridded LCLUC products. Different from other databases, we tracked the planting area dynamics of all crops in the US, excluding idle and fallow farm land and cropland pasture. The results showed that the crop acreages for nine major crops derived from our map products are highly consistent with the county-level inventory data, with a residual less than 0.2×103 ha (0.2 kha) in most counties (>75 %) during the entire study period. Temporally, the US total crop acreage has increased by 118×106 ha (118 Mha) from 1850 to 2021, primarily driven by corn (30 Mha) and soybean (35 Mha). Spatially, the hot spots of cropland distribution shifted from the Eastern US to the Midwest and the Great Plains, and the dominant crop types (corn and soybean) expanded northwestward. Moreover, we found that the US cropping diversity experienced a significant increase from the 1850s to the 1960s, followed by a dramatic decline in the recent 6 decades under intensified agriculture. Generally, this newly developed dataset could facilitate spatial data development, with respect to delineating crop-specific management practices, and enable the quantification of cropland change impacts on the environment. Annual cropland density and crop type maps are available at https://doi.org/10.6084/m9.figshare.22822838.v2 (Ye et al., 2023).
more »
« less
- PAR ID:
- 10568153
- Publisher / Repository:
- Earth System Science Data
- Date Published:
- Journal Name:
- Earth System Science Data
- Volume:
- 16
- Issue:
- 7
- ISSN:
- 1866-3516
- Page Range / eLocation ID:
- 3453 to 3470
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Understanding and assessing the spatiotemporal patterns in crop-specific phosphorus (P) fertilizer management are crucial for enhancing crop yield and mitigating environmental problems. The existing P fertilizer dataset, derived from sales data, depicts an average application rate over total cropland at the county level but overlooks cross-crop variations. Conversely, the survey-based dataset offers crop-specific application details at the state level yet lacks inter-state variability. By reconciling these two datasets, we developed long-term gridded maps to characterize crop-specific P fertilizer application rates, timing, and methods across the contiguous US at a resolution of 4 km × 4 km from 1850 to 2022. We found that P fertilizer application rate over fertilized areas in the US increased from 0.9 g P m−2 yr−1 in 1940 to 1.9 g P m−2 yr−1 in 2022, with substantial variations among crops. However, approximately 40 % of cropland nationwide has remained unfertilized in the recent decade. The hotspots for P fertilizer use have shifted from the southeastern and eastern US to the Midwest and the Great Plains over the past century, reflecting changes in cropland area, crop choices, and P fertilizer use across different crops. Pre-planting (fall and spring) and broadcast application are prevalent among corn, soybean, and cotton in the Midwest and the Southeast, indicating a high P loss risk in these regions. In contrast, wheat and barley in the Great Plains receive the most intensive P fertilization at planting and via non-broadcast application. The P fertilizer management dataset developed in this study can advance our comprehension of agricultural P budgets and facilitate the refinement of best P fertilizer management practices to optimize crop yield and to reduce P loss. Datasets are available at https://doi.org/10.5281/zenodo.10700821 (Cao et al., 2024).more » « less
-
The Renewable Fuel Standard (RFS) specifies the use of biofuels in the United States and thereby guides nearly half of all global biofuel production, yet outcomes of this keystone climate and environmental regulation remain unclear. Here we combine econometric analyses, land use observations, and biophysical models to estimate the realized effects of the RFS in aggregate and down to the scale of individual agricultural fields across the United States. We find that the RFS increased corn prices by 30% and the prices of other crops by 20%, which, in turn, expanded US corn cultivation by 2.8 Mha (8.7%) and total cropland by 2.1 Mha (2.4%) in the years following policy enactment (2008 to 2016). These changes increased annual nationwide fertilizer use by 3 to 8%, increased water quality degradants by 3 to 5%, and caused enough domestic land use change emissions such that the carbon intensity of corn ethanol produced under the RFS is no less than gasoline and likely at least 24% higher. These tradeoffs must be weighed alongside the benefits of biofuels as decision-makers consider the future of renewable energy policies and the potential for fuels like corn ethanol to meet climate mitigation goals.more » « less
-
Abstract The United States is a major producer and exporter of agricultural goods, fulfilling global demands for food, fiber, and fuel while generating substantial economic benefits. Agriculture in the U.S. not only dominates land use but also ranks as the largest water-consuming sector. High-resolution cropland mapping and insights into cultivation trends are essential to enhance sustainable management of land and water resources. Existing data sources present a trade-off between temporal breadth and spatial resolution, leading to gaps in detailed geographic crop distribution. To bridge this gap, we adopted a data-fusion methodology that leverages the advantages of various data sources, including county-level data from the U.S. Department of Agriculture, along with several gridded land use datasets. This approach enabled us to create annual maps, termed HarvestGRID, of irrigated and harvested areas for 30 key crops across the U.S. from 1981 to 2019 at a resolution of 2.5 arc minutes. Over the past four decades, irrigated harvested area has remained relatively stable nationally; however, several western states exhibit a declining trend, while some eastern states show an upward trend. Notably, more than 50% of the irrigated land in the U.S. lies above three major aquifers: the High Plains, Central Valley, and Mississippi Embayment Aquifers. We assessed the accuracy of HarvestGRID by comparing it with other large-scale gridded cropland databases, identifying both consistencies and discrepancies across different years, regions, and crops. This dataset is pivotal for analyzing long-term cropland use patterns and supports the advancement of more sustainable agricultural practices.more » « less
-
What would it look like? Visualizing a future US Corn Belt landscape with more table food productionAbstract Most farmland in the US Corn Belt is used to grow row crops at large scales (e.g., corn, soybean) that are highly processed before entering the human food stream rather than specialty crops grown in smaller areas and meant for direct human consumption (table food). Bolstering local table food production close to urban populations in this region through peri-urban agriculture (PUA) could enhance sustainability and resilience. Understanding factors influencing PUA producers' preferences and willingness to produce table food would enable supportive planning and policy efforts. This study combined land use visualization and survey data to examine the potential for increased local table food production for the US Corn Belt. We developed a spatial visualization of current agricultural land use and a future scenario with increased table food production designed to meet 50% of dietary requirements for a metropolitan population in 2050. A survey was administered to row crop (1360) and specialty crop (55) producers near Des Moines, Iowa, US to understand current and intended agricultural land use and factors influencing production. Responses from 316 row crop and 25 specialty crop producers were eligible for this analysis. A future scenario with increased table food production would require less than 3% of available agricultural land and some additional producers (approximately 130, primarily for grain production). Survey responses indicated PUA producers planned small increases in table food production in the next three to five years. Producer plans, including land rental for table food production, could provide approximately 25% of residents' fruit, vegetables, and grains, an increase from the baseline of 2%. Row crop producers ranked food safety regulations, and specialty producers ranked labor concerns as strong influences on their decision-making. Both groups indicated that crop insurance and processing facilities were also important. Increasing table food production by clustering mid-scale operations to increase economies of scale and strengthening supply chains and production infrastructure could provide new profitable opportunities for farmers and more resilient food systems for growing urban regions in the US Corn Belt. Continuing to address producer factors and landscape-scale environmental impacts will be critical in considering food system sustainability challenges holistically.more » « less
An official website of the United States government

