The Renewable Fuel Standard (RFS) specifies the use of biofuels in the United States and thereby guides nearly half of all global biofuel production, yet outcomes of this keystone climate and environmental regulation remain unclear. Here we combine econometric analyses, land use observations, and biophysical models to estimate the realized effects of the RFS in aggregate and down to the scale of individual agricultural fields across the United States. We find that the RFS increased corn prices by 30% and the prices of other crops by 20%, which, in turn, expanded US corn cultivation by 2.8 Mha (8.7%) and total cropland by 2.1 Mha (2.4%) in the years following policy enactment (2008 to 2016). These changes increased annual nationwide fertilizer use by 3 to 8%, increased water quality degradants by 3 to 5%, and caused enough domestic land use change emissions such that the carbon intensity of corn ethanol produced under the RFS is no less than gasoline and likely at least 24% higher. These tradeoffs must be weighed alongside the benefits of biofuels as decision-makers consider the future of renewable energy policies and the potential for fuels like corn ethanol to meet climate mitigation goals.
more »
« less
Annual time-series 1 km maps of crop area and types in the conterminous US (CropAT-US): cropping diversity changes during 1850–2021
Agricultural activities have been recognized as an important driver of land cover and land use change (LCLUC) and have significantly impacted the ecosystem feedback to climate by altering land surface properties. A reliable historical cropland distribution dataset is crucial for understanding and quantifying the legacy effects of agriculture-related LCLUC. While several LCLUC datasets have the potential to depict cropland patterns in the conterminous US, there remains a dearth of a relatively high-resolution datasets with crop type details over a long period. To address this gap, we reconstructed historical cropland density and crop type maps from 1850 to 2021 at a resolution of 1 km × 1 km by integrating county-level crop-specific inventory datasets, census data, and gridded LCLUC products. Different from other databases, we tracked the planting area dynamics of all crops in the US, excluding idle and fallow farm land and cropland pasture. The results showed that the crop acreages for nine major crops derived from our map products are highly consistent with the county-level inventory data, with a residual less than 0.2×103 ha (0.2 kha) in most counties (>75 %) during the entire study period. Temporally, the US total crop acreage has increased by 118×106 ha (118 Mha) from 1850 to 2021, primarily driven by corn (30 Mha) and soybean (35 Mha). Spatially, the hot spots of cropland distribution shifted from the Eastern US to the Midwest and the Great Plains, and the dominant crop types (corn and soybean) expanded northwestward. Moreover, we found that the US cropping diversity experienced a significant increase from the 1850s to the 1960s, followed by a dramatic decline in the recent 6 decades under intensified agriculture. Generally, this newly developed dataset could facilitate spatial data development, with respect to delineating crop-specific management practices, and enable the quantification of cropland change impacts on the environment. Annual cropland density and crop type maps are available at https://doi.org/10.6084/m9.figshare.22822838.v2 (Ye et al., 2023).
more »
« less
- Award ID(s):
- 1903722
- PAR ID:
- 10568153
- Publisher / Repository:
- Earth System Science Data
- Date Published:
- Journal Name:
- Earth System Science Data
- Volume:
- 16
- Issue:
- 7
- ISSN:
- 1866-3516
- Page Range / eLocation ID:
- 3453 to 3470
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The United States is a major producer and exporter of agricultural goods, fulfilling global demands for food, fiber, and fuel while generating substantial economic benefits. Agriculture in the U.S. not only dominates land use but also ranks as the largest water-consuming sector. High-resolution cropland mapping and insights into cultivation trends are essential to enhance sustainable management of land and water resources. Existing data sources present a trade-off between temporal breadth and spatial resolution, leading to gaps in detailed geographic crop distribution. To bridge this gap, we adopted a data-fusion methodology that leverages the advantages of various data sources, including county-level data from the U.S. Department of Agriculture, along with several gridded land use datasets. This approach enabled us to create annual maps, termed HarvestGRID, of irrigated and harvested areas for 30 key crops across the U.S. from 1981 to 2019 at a resolution of 2.5 arc minutes. Over the past four decades, irrigated harvested area has remained relatively stable nationally; however, several western states exhibit a declining trend, while some eastern states show an upward trend. Notably, more than 50% of the irrigated land in the U.S. lies above three major aquifers: the High Plains, Central Valley, and Mississippi Embayment Aquifers. We assessed the accuracy of HarvestGRID by comparing it with other large-scale gridded cropland databases, identifying both consistencies and discrepancies across different years, regions, and crops. This dataset is pivotal for analyzing long-term cropland use patterns and supports the advancement of more sustainable agricultural practices.more » « less
-
What would it look like? Visualizing a future US Corn Belt landscape with more table food productionAbstract Most farmland in the US Corn Belt is used to grow row crops at large scales (e.g., corn, soybean) that are highly processed before entering the human food stream rather than specialty crops grown in smaller areas and meant for direct human consumption (table food). Bolstering local table food production close to urban populations in this region through peri-urban agriculture (PUA) could enhance sustainability and resilience. Understanding factors influencing PUA producers' preferences and willingness to produce table food would enable supportive planning and policy efforts. This study combined land use visualization and survey data to examine the potential for increased local table food production for the US Corn Belt. We developed a spatial visualization of current agricultural land use and a future scenario with increased table food production designed to meet 50% of dietary requirements for a metropolitan population in 2050. A survey was administered to row crop (1360) and specialty crop (55) producers near Des Moines, Iowa, US to understand current and intended agricultural land use and factors influencing production. Responses from 316 row crop and 25 specialty crop producers were eligible for this analysis. A future scenario with increased table food production would require less than 3% of available agricultural land and some additional producers (approximately 130, primarily for grain production). Survey responses indicated PUA producers planned small increases in table food production in the next three to five years. Producer plans, including land rental for table food production, could provide approximately 25% of residents' fruit, vegetables, and grains, an increase from the baseline of 2%. Row crop producers ranked food safety regulations, and specialty producers ranked labor concerns as strong influences on their decision-making. Both groups indicated that crop insurance and processing facilities were also important. Increasing table food production by clustering mid-scale operations to increase economies of scale and strengthening supply chains and production infrastructure could provide new profitable opportunities for farmers and more resilient food systems for growing urban regions in the US Corn Belt. Continuing to address producer factors and landscape-scale environmental impacts will be critical in considering food system sustainability challenges holistically.more » « less
-
Abstract Granular temporal and spatial scale observations of conservation practices are essential for identifying changes in the production systems that improve soil health and water quality and inform long-term agricultural research and adaptive policy development. In this study, we demonstrate an innovative use of farmer practice survey data and what can be uniquely known from a detailed survey that targets specific farm groups with a regional focus over multiple consecutive years. Using three years of survey data ( n = 3914 respondents), we describe prevailing crop rotation, tillage, and cover crop practice use in four Midwestern US states. Like national metrics, the results confirm dominant practices across the landscape, including corn-soybean rotation, little use of continuous no-till, and the limited use of cover crops. Our detailed regional survey further reveals differences by state for no-till and cover crop adoption rates that were not captured in federal datasets. For example, 66% of sampled acreage in the Midwest has corn and soybean rotation, with Illinois having the highest rate (72%) and Michigan the lowest (41%). In 2018, 20% of the corn acreage and 38% of the soybean acreage were in no-till, and 13% of the corn acres and 9% of the soybean acres were planted with a cover crop. Cover crop adoption rates fluctuate from year to year. Results demonstrate the value of a farmer survey at state scales over multiple years in complementing federal statistics and monitoring state and yearly differences in practice adoption. Agricultural policies and industry heavily depend on accurate and timely information that reflects spatial and temporal dynamics. We recommend building an agricultural information exchange and workforce that integrates diverse data sources with complementary strengths to provide a greater understanding of agricultural management practices that provide baseline data for prevailing practices.more » « less
-
Abstract With climate change threatening agricultural productivity and global food demand increasing, it is important to better understand which farm management practices will maximize crop yields in various climatic conditions. To assess the effectiveness of agricultural practices, researchers often turn to randomized field experiments, which are reliable for identifying causal effects but are often limited in scope and therefore lack external validity. Recently, researchers have also leveraged large observational datasets from satellites and other sources, which can lead to conclusions biased by confounding variables or systematic measurement errors. Because experimental and observational datasets have complementary strengths, in this paper we propose a method that uses a combination of experimental and observational data in the same analysis. As a case study, we focus on the causal effect of crop rotation on corn (maize) and soybean yields in the Midwestern United States. We find that, in terms of root mean squared error, our hybrid method performs 13% better than using experimental data alone and 26% better than using the observational data alone in the task of predicting the effect of rotation on corn yield at held-out experimental sites. Further, the causal estimates based on our method suggest that benefits of crop rotations on corn yield are lower in years and locations with high temperatures whereas the benefits of crop rotations on soybean yield are higher in years and locations with high temperatures. In particular, we estimated that the benefit of rotation on corn yields (and soybean yields) was 0.85 t ha−1(0.24 t ha−1) on average for the top quintile of temperatures, 1.03 t ha−1(0.21 t ha−1) on average for the whole dataset, and 1.19 t ha−1(0.16 t ha−1) on average for the bottom quintile of temperatures. This association between temperatures and rotation benefits is consistent with the hypothesis that the benefit of the corn-soybean rotation on soybean yield is largely driven by pest pressure reductions while the benefit of the corn-soybean rotation on corn yields is largely driven by nitrogen availability.more » « less