skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Security games with malicious adversaries in the clouds: status update
Outsourcing computational tasks to the cloud offers numerous advantages, such as availability, scalability, and elasticity. These advantages are evident when outsourcing resource-demanding Machine Learning (ML) applications. However, cloud computing presents security challenges. For instance, allocating Virtual Machines (VMs) with varying security levels onto commonly shared servers creates cybersecurity and privacy risks. Researchers proposed several cryptographic methods to protect privacy, such as Multi-party Computation (MPC). Attackers unfortunately can still gain unauthorized access to users’ data if they successfully compromise a specific number of the participating MPC nodes. Cloud Service Providers (CSPs) can mitigate the risk of such attacks by distributing the MPC protocol over VMs allocated to separate physical servers (i.e., hypervisors). On the other hand, underutilizing cloud servers increases operational and resource costs, and worsens the overhead of MPC protocols. In this ongoing work, we address the security, communication and computation overheads, and performance limitations of MPC. We model this multi-objective optimization problem using several approaches, including but not limited to, zero-sum and non-zero-sum games. For example, we investigate Nash Equilibrium (NE) allocation strategies that reduce potential security risks, while minimizing response time and performance overhead, and/or maximizing resource usage.  more » « less
Award ID(s):
2043302
PAR ID:
10559368
Author(s) / Creator(s):
; ; ;
Editor(s):
Harguess, Joshua D; Bastian, Nathaniel D; Pace, Teresa L
Publisher / Repository:
SPIE
Date Published:
ISBN:
9781510674264
Page Range / eLocation ID:
23
Subject(s) / Keyword(s):
Machine Learning Optimization Multi-party Computation Secret Sharing Game Theory
Format(s):
Medium: X
Location:
National Harbor, United States
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Oblivious Random Access Machine (ORAM) allows a client to hide the access pattern and thus, offers a strong level of privacy for data outsourcing. An ideal ORAM scheme is expected to offer desirable properties such as low client bandwidth, low server computation overhead, and the ability to compute over encrypted data. S3ORAM (CCS’17) is an efficient active ORAM scheme, which takes advantage of secret sharing to provide ideal properties for data outsourcing such as low client bandwidth, low server computation and low delay. Despite its merits, S3ORAM only offers security in the semi-honest setting. In practice, an ORAM protocol is likely to operate in the presence of malicious adversaries who might deviate from the protocol to compromise the client privacy. In this paper, we propose MACAO, a new multi-server ORAM framework, which offers integrity, access pattern obliviousness against active adversaries, and the ability to perform secure computation over the accessed data. MACAO harnesses authenticated secret sharing techniques and tree-ORAM paradigm to achieve low client communication, efficient server computation, and low storage overhead at the same time. We fully implemented MACAO and conducted extensive experiments in real cloud platforms (Amazon EC2) to validate the performance of MACAO compared with the state-of-the-art. Our results indicate that MACAO can achieve comparable performance to S3ORAM while offering security against malicious adversaries. MACAO is a suitable candidate for integration into distributed file systems with encrypted computation capabilities towards enabling an oblivious functional data outsourcing infrastructure. 
    more » « less
  2. Applications today rely on cloud databases for storing and querying time-series data. While outsourcing storage is convenient, this data is often sensitive, making data breaches a serious concern. We present Waldo, a time-series database with rich functionality and strong security guarantees: Waldo supports multi-predicate filtering, protects data contents as well as query filter values and search access patterns, and provides malicious security in the 3-party honest-majority setting. In contrast, prior systems such as Timecrypt and Zeph have limited functionality and security: (1) these systems can only filter on time, and (2) they reveal the queried time interval to the server. Oblivious RAM (ORAM) and generic multiparty computation (MPC) are natural choices for eliminating leakage from prior work, but both of these are prohibitively expensive in our setting due to the number of roundtrips and bandwidth overhead, respectively. To minimize both, Waldo builds on top of function secret sharing, enabling Waldo to evaluate predicates non-interactively. We develop new techniques for applying function secret sharing to the encrypted database setting where there are malicious servers, secret inputs, and chained predicates. With 32-core machines, Waldo runs a query with 8 range predicates over 2 18 records in 3.03s, compared to 12.88s or an MPC baseline and 16.56s for an ORAM baseline. Compared to Waldo, the MPC baseline uses 9−82× more bandwidth between servers (for different numbers of records), while the ORAM baseline uses 20−152× more bandwidth between the client and server(s) (for different numbers of predicates). 
    more » « less
  3. Transient computing has become popular in public cloud environments for running delay-insensitive batch and data processing applications at low cost. Since transient cloud servers can be revoked at any time by the cloud provider, they are considered unsuitable for running interactive application such as web services. In this paper, we present VM deflation as an alternative mechanism to server preemption for reclaiming resources from transient cloud servers under resource pressure. Using real traces from top-tier cloud providers, we show the feasibility of using VM deflation as a resource reclamation mechanism for interactive applications in public clouds. We show how current hypervisor mechanisms can be used to implement VM deflation and present cluster deflation policies for resource management of transient and on-demand cloud VMs. Experimental evaluation of our deflation system on a Linux cluster shows that microservice-based applications can be deflated by up to 50% with negligible performance overhead. Our cluster-level deflation policies allow overcommitment levels as high as 50%, with less than a 1% decrease in application throughput, and can enable cloud platforms to increase revenue by 30% 
    more » « less
  4. We present Secrecy, a system for privacy-preserving collaborative analytics as a service. Secrecy allows multiple data holders to contribute their data towards a joint analysis in the cloud, while keeping the data siloed even from the cloud providers. At the same time, it enables cloud providers to offer their services to clients who would have otherwise refused to perform a computation altogether or insisted that it be done on private infrastructure. Secrecy ensures no information leakage and provides provable security guarantees by employing cryptographically secure Multi-Party Computation (MPC). In Secrecy we take a novel approach to optimizing MPC execution by co-designing multiple layers of the system stack and exposing the MPC costs to the query engine. To achieve practical performance, Secrecy applies physical optimizations that amortize the inherent MPC overheads along with logical optimizations that dramatically reduce the computation, communication, and space requirements during query execution. Our multi-cloud experiments demonstrate that Secrecy improves query performance by over 1000x compared to existing approaches and computes complex analytics on millions of data records with modest use of resources. 
    more » « less
  5. As the adoption of cloud storage service has been pervasive, more and more attentions have been paid to the related security and privacy risks, among which, data access pattern privacy is an important aspect. Lots of solutions have been proposed, but most are infeasible due to high overheads in communication and storage. In this paper, we propose a new solution to address the limitations by leveraging the moderate storage capacity in the increasingly popular cloud storage gate-ways and the existence of multiple competing and independent cloud storage servers. Extensive analysis and evaluation have shown that, our proposed system can simultaneously attain the features of provable protection of data access pattern, low data query delay, low server storage overhead, low communication costs, and accountability 
    more » « less