Paleoclimate proxy evidence suggests that the Atlantic meridional overturning circulation (AMOC) was about 1000 m shallower at the Last Glacial Maximum (LGM) compared to the present. Yet it remains unresolved what caused this glacial shoaling of the AMOC, and many climate models instead simulate a deeper AMOC under LGM forcing. While some studies suggest that Southern Ocean surface buoyancy forcing controls the AMOC depth, others have suggested alternatively that North Atlantic surface forcing or interior diabatic mixing plays the dominant role. To investigate the key processes that set the AMOC depth, here we carry out a number of MITgcm ocean-only simulations with surface forcing fields specified from the simulation results of three coupled climate models that span much of the range of glacial AMOC depth changes in phase 3 of the Paleoclimate Model Intercomparison Project (PMIP3). We find that the MITgcm simulations successfully reproduce the changes in AMOC depth between glacial and modern conditions simulated in these three PMIP3 models. By varying the restoring time scale in the surface forcing, we show that the AMOC depth is more strongly constrained by the surface density field than the surface buoyancy flux field. Based on these results, we propose a mechanism by which the surface density fields in the high latitudes of both hemispheres are connected to the AMOC depth. We illustrate the mechanism using MITgcm simulations with idealized surface forcing perturbations as well as an idealized conceptual geometric model. These results suggest that the AMOC depth is largely determined by the surface density fields in both the North Atlantic and the Southern Ocean.
more »
« less
Consensus Around a Common Definition of Atlantic Overturning Will Promote Progress
Quantifying the strength of the Atlantic Meridional Overturning Circulation (AMOC) involves separating the northward and southward limbs and calculating their volume transports. The limbs can be distinguished either by depth level or by density class, but recent results have indicated that this choice of coordinate system leads to divergent results, both in terms of the AMOC mean state and its variability. Here, we demonstrate that the AMOC in density coordinates is more informative of the large-scale, three-dimensional AMOC structure, is more closely aligned with the AMOC’s climatic impact via oceanic meridional heat transport, and retains more information about future AMOC pathways than the depth space definition. Adopting a commonly accepted definition of the AMOC in density coordinates will unify a divided literature and promote progress in the field. This commentary thus highlights that the coordinate system used to define the AMOC matters, not only for understanding physical processes and past variations that remain elusive, but also for physically appropriate monitoring of its future evolution.
more »
« less
- Award ID(s):
- 2123128
- PAR ID:
- 10559726
- Publisher / Repository:
- The Oceanography Society
- Date Published:
- Journal Name:
- Oceanography
- ISSN:
- 1042-8275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Observation‐based estimates of the Atlantic Meridional Overturning Circulation (AMOC) and meridional heat transport (MHT) are necessary to better understand their evolution in the coming years. The RAPID‐MOCHA‐WBTS array at 26°N is the only trans‐Atlantic observing system to provide 20+ years of continuous measurements of the AMOC and MHT. While the design of the array has continuously evolved as our understanding of the AMOC has advanced, and as new technologies have become available, a new goal is to design a lower‐cost and more sustainable observing system to continue AMOC estimations with high accuracy. Using the RAPID array data and ocean reanalyzes, we evaluate the error in the AMOC estimate due to the choice of data included in its calculation. We find that the trend and variability of the volume transport in the upper 3,000‐m of the water column are not captured with sufficient accuracy by synoptic hydrographic data or ocean reanalyzes. However, moorings in the deep ocean interior along the eastern boundary and the Mid‐Atlantic ridge can be replaced by hydrographic data from repeat trans‐Atlantic hydrographic sections to reliably estimate the AMOC trend and variability. Experiments simulating the observing system in a high‐resolution ocean model further show that the additional error in the long‐term AMOC estimate induced by the substitution of mooring measurements below 3,000‐m depth at these locations is small (0.30 Sv) as compared to the AMOC uncertainty.more » « less
-
Atlantic Meridional Overturning Circulation (AMOC) circulates heat and nutrients within the Atlantic Ocean. As it plays a vital role in regulating climate, precipitation, and productivity, it is imperative to gain a deeper understanding of this system of ocean currents. This endeavor is especially urgent, as recent studies have stressed the potential impact of freshwater inputs due to anthropogenic climate change on the strength of AMOC. In addition to the uncertainty associated with the claim of a slowdown or complete collapse of AMOC in the near future, questions about the geometry of AMOC remain unanswered. For instance, intra-basin variability in North Atlantic paleocirculation (231Pa/230Th) records was observed in Gherardi et al., 2005. However, it was unclear whether different sources of Glacial North Atlantic Intermediate Water (GNAIW) or different overturning depths caused this variability. Reconstructing deep ocean circulation in the eastern North Atlantic using an assortment of geochemical proxies can provide insight into the future state of AMOC, as well as the evolution of its geometry. Here we present records of benthic foraminiferal δ18O and δ13C, and sedimentary 231Pa/230Th (a kinematic proxy for AMOC strength) from International Ocean Discovery Program (IODP) expedition 397, Iberian Margin Paleoclimate, site 1586 (37°37.7108′N, 10°42.6987′W, 4691.4 mbsl). The optimal location and depth of this site allow for a meaningful comparison to available paleocirculation records in order to determine whether AMOC strength varies zonally or with depth. We find that the benthic δ13C, export of 231Pa, and inferred strength of AMOC generally increased from the LGM to the Holocene, with significant decreases during Heinrich events 1 and 2. Additionally, the 231Pa/230Th record at this deep site in the eastern basin was found to vary in a similar pattern as that of a western site of a comparable depth, more closely than that of a shallower, proximal site on the Iberian Margin (Gherardi et al., 2005). This indicates that depth differences are more of a determining factor than zonal differences in establishing AMOC strength, revealing that different overturning depths likely influenced the variability observed between eastern and western Atlantic paleocirculation records more than different GNAIW sources.more » « less
-
Abstract We characterise, and explore the drivers of, differences in the internal variability of the atlantic meridional overturning circulation (AMOC) across five NEMO-based CMIP6 class climate models. While the variability of AMOC variability is dominated by its lower dense limb in all models, there is large diversity in the timescale, multidecadal variability, and latitudinal coherence of AMOC across models. In particular, the UK models have much weaker AMOC multidecadal variability and latitudinal coherence. The model diversity is associated with differences in salinity-governed surface density variations which drive high-density water mass transformation (WMT) in the Greenland–Iceland–Norwegian Seas (GIN) and the Arctic. Specifically, GIN Seas WMT shows large multidecadal variability which has a major impact on AMOC variability in non-UK models. In contrast, the smaller variability in GIN Seas WMT in the UK models has limited impact on the lower latitude AMOC via the Denmark strait overflow mass transport. This leads to a latitudinally less coherent and weaker multidecadal variability of the AMOC lower limb. Such differences between UK and non-UK models are related to differences in model mean states and densification processes in the Arctic and GIN Seas. Consequently, we recommend further in-depth studies to better understand and constrain processes driving salinity changes in the Arctic and GIN Seas for more reliable representation of the AMOC in climate models.more » « less
-
Abstract We present idealized simulations to explore how the shape of eastern and western continental boundaries along the Atlantic Ocean influences the Atlantic meridional overturning circulation (AMOC). We use a state-of-the art ocean–sea ice model (MOM6 and SIS2) with idealized, zonally symmetric surface forcing and a range of idealized continental configurations with a large, Pacific-like basin and a small, Atlantic-like basin. We perform simulations with five coastline geometries along the Atlantic-like basin that range from coastlines that are straight to coastlines that are shaped like the coasts of the American and African continents. Changing the Atlantic basin coastline shape influences AMOC strength in a manner distinct from simply increasing basin width: widening the basin while maintaining straight coastlines leads to a 10-Sv (1 Sv ≡ 106m3s−1) increase in AMOC strength, whereas widening the basin with the geometry of the American and African continents leads to a 6-Sv increase in AMOC strength, despite both cases representing the same average basin-width increase relative to a control case. The structure of AMOC changes are different between these two cases as well: a more realistic basin geometry results in a shoaled AMOC while widening the basin with straight boundaries deepens AMOC. We test the influence of the shape of the both boundaries independently and find that AMOC is more sensitive to the American coastline while the African coastline impacts the abyssal circulation. We also find that AMOC strength and depth scales well with basin-scale meridional density difference, even with different Atlantic basin geometries, illuminating a robust physical link between AMOC and the North Atlantic western boundary density gradient.more » « less
An official website of the United States government

