Continuous measurements of the Atlantic meridional overturning circulation (AMOC) and meridional ocean heat transport at 26.5° N began in April 2004 and are currently available through December 2020. Approximately 90% of the total meridional heat transport (MHT) at 26.5° N is carried by the zonally averaged overturning circulation, and an even larger fraction of the heat transport variability (approx. 95%) is explained by the variability of the zonally averaged overturning. A physically based separation of the heat transport into large-scale AMOC, gyre and shallow wind-driven overturning components remains challenging and requires new investigations and approaches. We review the major interannual changes in the AMOC and MHT that have occurred over the nearly two decades of available observations and their documented impacts on North Atlantic heat content. Changes in the flow-weighted temperature of the Florida Current (Gulf Stream) over the past two decades are now taken into account in the estimates of MHT, and have led to an increased heat transport relative to the AMOC strength in recent years. Estimates of the MHT at 26.5° N from coupled models and various surface flux datasets still tend to show low biases relative to the observations, but indirect estimates based on residual methods (top of atmosphere net radiative flux minus atmospheric energy divergence) have shown recent promise in reproducing the heat transport and its interannual variability.This article is part of a discussion meeting issue ‘Atlantic overturning: new observations and challenges’.
more »
« less
This content will become publicly available on November 1, 2026
Evaluation of a Reduced RAPID Array for Measuring the AMOC
Abstract Observation‐based estimates of the Atlantic Meridional Overturning Circulation (AMOC) and meridional heat transport (MHT) are necessary to better understand their evolution in the coming years. The RAPID‐MOCHA‐WBTS array at 26°N is the only trans‐Atlantic observing system to provide 20+ years of continuous measurements of the AMOC and MHT. While the design of the array has continuously evolved as our understanding of the AMOC has advanced, and as new technologies have become available, a new goal is to design a lower‐cost and more sustainable observing system to continue AMOC estimations with high accuracy. Using the RAPID array data and ocean reanalyzes, we evaluate the error in the AMOC estimate due to the choice of data included in its calculation. We find that the trend and variability of the volume transport in the upper 3,000‐m of the water column are not captured with sufficient accuracy by synoptic hydrographic data or ocean reanalyzes. However, moorings in the deep ocean interior along the eastern boundary and the Mid‐Atlantic ridge can be replaced by hydrographic data from repeat trans‐Atlantic hydrographic sections to reliably estimate the AMOC trend and variability. Experiments simulating the observing system in a high‐resolution ocean model further show that the additional error in the long‐term AMOC estimate induced by the substitution of mooring measurements below 3,000‐m depth at these locations is small (0.30 Sv) as compared to the AMOC uncertainty.
more »
« less
- PAR ID:
- 10653914
- Publisher / Repository:
- NSF
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 130
- Issue:
- 11
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With contributions from the US, UK, Germany, the Netherlands, Canada and China, the Overturning in the Subpolar North Atlantic Program (OSNAP) observing system was installed in the summer of 2014, which aims at measuring and understanding what drives the Atlantic Meridional Overturning Circulation (AMOC) and its variability. This coast-to-coast array of high-resolution moorings provides a continuous record of the full water column, trans-basin fluxes of heat, mass and freshwater in the subpolar North Atlantic. Data from observing system between August 2014 – June 2018 have been used to estimate those key variables for the full array as well as two sub-sections: OSNAP West, in the Labrador Sea, and OSNAP East, between Greenland and the Scottish shelf. We show notable differences in the magnitude and variability of the MOC across the full array between 2014-2016 and 2016-2018, and discuss the associated changes in the heat and freshwater transports. Differences between the fluxes across the OSNAP West and OSNAP East subsections will also be presented, along with a discussion of how this relates to the formation and transport of deep waters in the region.more » « less
-
The RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) program has produced a continuous heat transport time series of the Atlantic Meridional Overturning Circulation (AMOC) at 26N that started in April 2004. This release of the heat transport time series covers the period from April 2004 to December 2020.The 26N AMOC time series is derived from measurements of temperature, salinity, pressure and water velocity from an array of moored instruments that extend from the east coast of the Bahamas to the continental shelf off Africa east of the Canary Islands. The AMOC heat transport calculation also uses estimates of the heat transport in the Florida Strait derived from sub-sea cable measurements calibrated by regular hydrographic cruises. The component of the AMOC associated with the wind driven Ekman layer is derived from ERA5 reanalysis. This release of the data includes a document with a brief description of the heat transport calculation of the AMOC time series and references to more detailed description in published papers. The 26N AMOC heat transport time series and the data from the moored array are curated by the Rosenstiel School of Marine, Atmospheric and Earth Science at the University of Miami. The RAPID-MOCHA-WBTS program is a joint effort between the NSF (Principal Investigators Bill Johns and Shane Elipot, Uni. Miami) in the USA, NERC in the UK (PI Ben Moat, David Smeed, and Brian King, NOC) and NOAA (PIs Denis Volkov and Ryan Smith).more » « less
-
The Atlantic meridional overturning circulation (AMOC) is a large-scale circulation pattern responsible for northward heat transport in the Atlantic and is associated with climate variations on a wide range of time scales. Observing the time-varying AMOC has fundamentally changed our understanding of the large-scale ocean circulation and its interaction with the climate system, as well as identified shortcomings in numerical simulations. With a wide range of gains already achieved, some now ask whether AMOC observations should continue. A measured approach is required for a future observing system that addresses identified gaps in understanding, accounts for shortcomings in observing methods and maximizes the potential to guide improvements in ocean and climate models. Here, we outline a perspective on future AMOC observing and steps that the community should consider to move forward. This article is part of a discussion meeting issue ‘Atlantic overturning: new observations and challenges’.more » « less
-
The RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) programme has produced a continuous time series of the Atlantic Meridional Overturning Circulation (AMOC) at 26N that started in April 2004. This release of the time series covers the period from April 2004 to February 2023. The 26N AMOC time series is derived from measurements of temperature, salinity, pressure and water velocity from an array of moored instruments that extend from the east coast of the Bahamas to the continental shelf off Africa east of the Canary Islands. The AMOC calculation also uses estimates of the transport in the Florida Strait derived from sub-sea cable measurements calibrated by regular hydrographic cruises. The component of the AMOC associated with the wind driven Ekman layer is derived from ERA5 reanalysis. This release of the data includes a document with a brief description of the calculation of the AMOC time series and references to more detailed description in published papers. The 26N AMOC time series and the data from the moored array are curated by the British Oceanographic Data Centre (BODC). The RAPID-MOCHA-WBTS programme is a joint effort between NERC in the UK (Principal Investigator Ben Moat since 2021, Eleanor Frajka-Williams since 2020 to 2021, David Smeed 2012 to 2020, and Stuart Cunningham from 2004 to 2012), NOAA (PIs Ryan Smith and Denis Volkov) and NSF (PIs Prof. Bill Johns and Prof. Shane Elipot, Uni. Miami) in the USA.more » « less
An official website of the United States government
