skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SPRITEly: Time-domain Millimeter Interferometry at the Owens Valley Radio Observatory
Abstract Though the time-domain millimeter sky is yet to be well characterized, the scarcity of millimeter observing resources in the world at present hampers progress toward it. In efforts to bolster the exploration of millimeter transients, we present the Stokes Polarization Radio Interferometer for Time-Domain Experiments (SPRITEly). Located at the Owens Valley Radio Observatory, SPRITEly is currently deployed as a two-element short-baseline 90 GHz interferometer uniquely focused on monitoring bright variable millimeter-continuum sources. We leverage two existing 10.4 m antennas and their existing receiver systems to begin, but we make significant upgrades to the back-end system during the commissioning process. With the ability to achieve rms noise of a few mJy, we plan to monitor known variable sources along with new nearby transients detected from optical surveys at high cadence, with the goal of producing well-sampled light curves. Interpreting these data in conjunction with multiwavelength observations stands to provide insight into the physical properties of the sources that produce transient millimeter emission. We present commissioning and early-science observations that demonstrate the performance of the instrument, including observations of the flaring BL Lac object S2 0109+22 and a periastron passage of the binary T Tauri system DQ Tau.  more » « less
Award ID(s):
1935980
PAR ID:
10559771
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astronomical Journal
Volume:
168
Issue:
4
ISSN:
0004-6256
Page Range / eLocation ID:
168
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a systematic search for tidal disruption events (TDEs) using radio data from the Variables and Slow Transients (VAST) Pilot Survey conducted using the Australian Square Kilometre Array Pathfinder. Historically, TDEs have been identified using observations at X-ray, optical, and ultraviolet wavelengths. After discovery, a few dozen TDEs have been shown to have radio counterparts through follow-up observations. With systematic time-domain radio surveys becoming available, we can now identify new TDEs in the radio regime. A population of radio-discovered TDEs has the potential to provide several key insights including an independent constraint on their volumetric rate. We conducted a search to select variable radio sources with a single prominent radio flare and a position consistent within 2σof the nucleus of a known galaxy. While TDEs were the primary target of our search, sources identified in this search may also be consistent with active galactic nuclei exhibiting unusual flux density changes at the timescales probed, uncharacteristically bright supernovae, or a population of gamma-ray bursts. We identify a sample of 12 radio-bright candidate TDEs. The timescales and luminosities range from ∼6 to 230 days and ∼1038to 1041erg s−1, respectively, consistent with models of radio emission from TDEs that launch relativistic jets. After calculating the detection efficiency of our search using a Monte Carlo simulation of TDEs, and assuming all 12 sources are jetted TDEs, we derive a volumetric rate for jetted TDEs of 0.80 0.23 + 0.31 Gpc−3yr−1, consistent with previous empirically estimated rates. 
    more » « less
  2. The Owens Valley Radio Observatory Long Wavelength Array is a low radio frequency all-sky imaging radio interferometer. The full 352-element array will generate more than 2 TB of visibility data per hour of observation. One of the array’s primary science cases, the search for variable radio emission from exoplanets and for transients, require fast and high dynamic range interferometric imaging. Here we detail the design and implementation of a two-pipeline infrastructure that minimizes development cost: an offline pipeline that facilitates experimentation with existing pack-ages, and a real-time pipeline that minimizes overhead. 
    more » « less
  3. ABSTRACT We present our analysis of supernovae serendipitously found to be radio-bright several years after their optical discovery. We used recent observations from the Australian SKA Pathfinder (ASKAP) taken as part of the pilot Variables and Slow Transients and Rapid ASKAP Continuum Survey programmes. We identified 29 objects by cross-matching sources from these ASKAP observations with known core-collapse supernovae below a declination of $$+40^{\circ }$$ and with a redshift of $$z\le 0.15$$. Our results focus on eight cases that show potential late-time radio emission. These supernovae exhibit significantly greater amounts of radio emission than expected from the standard model of a single shockwave propagating through a spherical circumstellar medium, with a constant density structure produced by regular stellar mass-loss. We also discuss how we can learn from future ASKAP surveys about the circumstellar environments and emission mechanisms of supernovae that undergo late-time radio re-brightening. This pilot work tested and confirmed the potential of the Variables and Slow Transients survey to discover and study late-time supernova emission. 
    more » « less
  4. Abstract We present a detailed compilation and analysis of the X-ray phase space of low- to intermediate-redshift (0 ≤z≤ 1) transients that consolidates observed light curves (and theory where necessary) for a large variety of classes of transient/variable phenomena in the 0.3–10 keV energy band. We include gamma-ray burst afterglows, supernovae, supernova shock breakouts and shocks interacting with the environment, tidal disruption events and active galactic nuclei, fast blue optical transients, cataclysmic variables, magnetar flares/outbursts and fast radio bursts, cool stellar flares, X-ray binary outbursts, and ultraluminous X-ray sources. Our overarching goal is to offer a comprehensive resource for the examination of these ephemeral events, extending the X-ray duration–luminosity phase space (DLPS) to show luminosity evolution. We use existing observations (both targeted and serendipitous) to characterize the behavior of various transient/variable populations. Contextualizing transient signals in the larger DLPS serves two primary purposes: to identify areas of interest (i.e., regions in the parameter space where one would expect detections, but in which observations have historically been lacking), and to provide initial qualitative guidance in classifying newly discovered transient signals. We find that while the most luminous (largely extragalactic) and least luminous (largely Galactic) part of the phase space is well populated att> 0.1 days, intermediate-luminosity phenomena (LX= 1034–1042erg s−1) represent a gap in the phase space. We thus identifyLX= 1034–1042erg s−1andt= 10−4to 0.1 days as a key discovery phase space in transient X-ray astronomy. 
    more » « less
  5. Abstract We present 1–12 GHz Karl G. Jansky Very Large Array observations of nine off-nuclear persistent radio sources (PRSs) in nearby (z≲ 0.055) dwarf galaxies, along with high-resolution European VLBI Network observations for one of them at 1.7 GHz. We explore the plausibility that these PRSs are associated with fast radio burst (FRB) sources by examining their properties—physical sizes, host-normalized offsets, spectral energy distributions (SEDs), radio luminosities, and light curves—and compare them to those of the PRSs associated with FRB 20121102A and FRB 20190520B, two known active galactic nuclei (AGN), and one likely AGN in our sample with comparable data, as well as other radio transients exhibiting characteristics analogous to FRB-PRSs. We identify a single source in our sample, J1136+2643, as the most promising FRB-PRS, based on its compact physical size and host-normalized offset. We further identify two sources, J0019+1507 and J0909+5655, with physical sizes comparable to FRB-PRSs, but which exhibit large offsets and flat spectral indices potentially indicative of a background AGN origin. We test the viability of neutron star wind nebula and hypernebula models for J1136+2643 and find that the physical size, luminosity, and SED of J1136+2643 are broadly consistent with these models. Finally, we discuss the alternative interpretation that the radio sources are instead powered by accreting massive black holes, and we outline future prospects and follow-up observations for differentiating between these scenarios. 
    more » « less