skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data science competition for cross-site individual tree species identification from airborne remote sensing data
Data on individual tree crowns from remote sensing have the potential to advance forest ecology by providing information about forest composition and structure with a continuous spatial coverage over large spatial extents. Classifying individual trees to their taxonomic species over large regions from remote sensing data is challenging. Methods to classify individual species are often accurate for common species, but perform poorly for less common species and when applied to new sites. We ran a data science competition to help identify effective methods for the task of classification of individual crowns to species identity. The competition included data from three sites to assess each methods’ ability to generalize patterns across two sites simultaneously and apply methods to an untrained site. Three different metrics were used to assess and compare model performance. Six teams participated, representing four countries and nine individuals. The highest performing method from a previous competition in 2017 was applied and used as a baseline to understand advancements and changes in successful methods. The best species classification method was based on a two-stage fully connected neural network that significantly outperformed the baseline random forest and gradient boosting ensemble methods. All methods generalized well by showing relatively strong performance on the trained sites (accuracy = 0.46–0.55, macro F1 = 0.09–0.32, cross entropy loss = 2.4–9.2), but generally failed to transfer effectively to the untrained site (accuracy = 0.07–0.32, macro F1 = 0.02–0.18, cross entropy loss = 2.8–16.3). Classification performance was influenced by the number of samples with species labels available for training, with most methods predicting common species at the training sites well (maximum F1 score of 0.86) relative to the uncommon species where none were predicted. Classification errors were most common between species in the same genus and different species that occur in the same habitat. Most methods performed better than the baseline in detecting if a species was not in the training data by predicting an untrained mixed-species class, especially in the untrained site. This work has highlighted that data science competitions can encourage advancement of methods, particularly by bringing in new people from outside the focal discipline, and by providing an open dataset and evaluation criteria from which participants can learn.  more » « less
Award ID(s):
1926542
PAR ID:
10559880
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
PeerJ
Date Published:
Journal Name:
PeerJ
Volume:
11
ISSN:
2167-8359
Page Range / eLocation ID:
e16578
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Airborne remote sensing offers unprecedented opportunities to efficiently monitor vegetation, but methods to delineate and classify individual plant species using the collected data are still actively being developed and improved. The Integrating Data science with Trees and Remote Sensing (IDTReeS) plant identification competition openly invited scientists to create and compare individual tree mapping methods. Participants were tasked with training taxon identification algorithms based on two sites, to then transfer their methods to a third unseen site, using field-based plant observations in combination with airborne remote sensing image data products from the National Ecological Observatory Network (NEON). These data were captured by a high resolution digital camera sensitive to red, green, blue (RGB) light, hyperspectral imaging spectrometer spanning the visible to shortwave infrared wavelengths, and lidar systems to capture the spectral and structural properties of vegetation. As participants in the IDTReeS competition, we developed a two-stage deep learning approach to integrate NEON remote sensing data from all three sensors and classify individual plant species and genera. The first stage was a convolutional neural network that generates taxon probabilities from RGB images, and the second stage was a fusion neural network that “learns” how to combine these probabilities with hyperspectral and lidar data. Our two-stage approach leverages the ability of neural networks to flexibly and automatically extract descriptive features from complex image data with high dimensionality. Our method achieved an overall classification accuracy of 0.51 based on the training set, and 0.32 based on the test set which contained data from an unseen site with unknown taxa classes. Although transferability of classification algorithms to unseen sites with unknown species and genus classes proved to be a challenging task, developing methods with openly available NEON data that will be collected in a standardized format for 30 years allows for continual improvements and major gains for members of the computational ecology community. We outline promising directions related to data preparation and processing techniques for further investigation, and provide our code to contribute to open reproducible science efforts. 
    more » « less
  2. Abstract Measuring forest biodiversity using terrestrial surveys is expensive and can only capture common species abundance in large heterogeneous landscapes. In contrast, combining airborne imagery with computer vision can generate individual tree data at the scales of hundreds of thousands of trees. To train computer vision models, ground‐based species labels are combined with airborne reflectance data. Due to the difficulty of finding rare species in a large landscape, many classification models only include the most abundant species, leading to biased predictions at broad scales. For example, if only common species are used to train the model, this assumes that these samples are representative across the entire landscape. Extending classification models to include rare species requires targeted data collection and algorithmic improvements to overcome large data imbalances between dominant and rare taxa. We use a targeted sampling workflow to the Ordway Swisher Biological Station within the US National Ecological Observatory Network (NEON), where traditional forestry plots had identified six canopy tree species with more than 10 individuals at the site. Combining iterative model development with rare species sampling, we extend a training dataset to include 14 species. Using a multi‐temporal hierarchical model, we demonstrate the ability to include species predicted at <1% frequency in landscape without losing performance on the dominant species. The final model has over 75% accuracy for 14 species with improved rare species classification compared to 61% accuracy of a baseline deep learning model. After filtering out dead trees, we generate landscape species maps of individual crowns for over 670 000 individual trees. We find distinct patches of forest composed of rarer species at the full‐site scale, highlighting the importance of capturing species diversity in training data. We estimate the relative abundance of 14 species within the landscape and provide three measures of uncertainty to generate a range of counts for each species. For example, we estimate that the dominant species,Pinus palustrisaccounts for c. 28% of predicted stems, with models predicting a range of counts between 160 000 and 210 000 individuals. These maps provide the first estimates of canopy tree diversity within a NEON site to include rare species and provide a blueprint for capturing tree diversity using airborne computer vision at broad scales. 
    more » « less
  3. Grilli, Jacopo (Ed.)
    Broad scale remote sensing promises to build forest inventories at unprecedented scales. A crucial step in this process is to associate sensor data into individual crowns. While dozens of crown detection algorithms have been proposed, their performance is typically not compared based on standard data or evaluation metrics. There is a need for a benchmark dataset to minimize differences in reported results as well as support evaluation of algorithms across a broad range of forest types. Combining RGB, LiDAR and hyperspectral sensor data from the USA National Ecological Observatory Network’s Airborne Observation Platform with multiple types of evaluation data, we created a benchmark dataset to assess crown detection and delineation methods for canopy trees covering dominant forest types in the United States. This benchmark dataset includes an R package to standardize evaluation metrics and simplify comparisons between methods. The benchmark dataset contains over 6,000 image-annotated crowns, 400 field-annotated crowns, and 3,000 canopy stem points from a wide range of forest types. In addition, we include over 10,000 training crowns for optional use. We discuss the different evaluation data sources and assess the accuracy of the image-annotated crowns by comparing annotations among multiple annotators as well as overlapping field-annotated crowns. We provide an example submission and score for an open-source algorithm that can serve as a baseline for future methods. 
    more » « less
  4. null (Ed.)
    Accurately mapping tree species composition and diversity is a critical step towards spatially explicit and species-specific ecological understanding. The National Ecological Observatory Network (NEON) is a valuable source of open ecological data across the United States. Freely available NEON data include in-situ measurements of individual trees, including stem locations, species, and crown diameter, along with the NEON Airborne Observation Platform (AOP) airborne remote sensing imagery, including hyperspectral, multispectral, and light detection and ranging (LiDAR) data products. An important aspect of predicting species using remote sensing data is creating high-quality training sets for optimal classification purposes. Ultimately, manually creating training data is an expensive and time-consuming task that relies on human analyst decisions and may require external data sets or information. We combine in-situ and airborne remote sensing NEON data to evaluate the impact of automated training set preparation and a novel data preprocessing workflow on classifying the four dominant subalpine coniferous tree species at the Niwot Ridge Mountain Research Station forested NEON site in Colorado, USA. We trained pixel-based Random Forest (RF) machine learning models using a series of training data sets along with remote sensing raster data as descriptive features. The highest classification accuracies, 69% and 60% based on internal RF error assessment and an independent validation set, respectively, were obtained using circular tree crown polygons created with half the maximum crown diameter per tree. LiDAR-derived data products were the most important features for species classification, followed by vegetation indices. This work contributes to the open development of well-labeled training data sets for forest composition mapping using openly available NEON data without requiring external data collection, manual delineation steps, or site-specific parameters. 
    more » « less
  5. Weinstein, Ben (Ed.)
    # Individual Tree Predictions for 100 million trees in the National Ecological Observatory Network Preprint: https://www.biorxiv.org/content/10.1101/2023.10.25.563626v1 ## Manuscript Abstract The ecology of forest ecosystems depends on the composition of trees. Capturing fine-grained information on individual trees at broad scales allows an unprecedented view of forest ecosystems, forest restoration and responses to disturbance. To create detailed maps of tree species, airborne remote sensing can cover areas containing millions of trees at high spatial resolution. Individual tree data at wide extents promises to increase the scale of forest analysis, biogeographic research, and ecosystem monitoring without losing details on individual species composition and abundance. Computer vision using deep neural networks can convert raw sensor data into predictions of individual tree species using ground truthed data collected by field researchers. Using over 40,000 individual tree stems as training data, we create landscape-level species predictions for over 100 million individual trees for 24 sites in the National Ecological Observatory Network. Using hierarchical multi-temporal models fine-tuned for each geographic area, we produce open-source data available as 1km^2 shapefiles with individual tree species prediction, as well as crown location, crown area and height of 81 canopy tree species. Site-specific models had an average performance of 79% accuracy covering an average of six species per site, ranging from 3 to 15 species. All predictions were uploaded to Google Earth Engine to benefit the ecology community and overlay with other remote sensing assets. These data can be used to study forest macro-ecology, functional ecology, and responses to anthropogenic change. ## Data Summary Each NEON site is a single zip archive with tree predictions for all available data. For site abbreviations see: https://www.neonscience.org/field-sites/explore-field-sites. For each site, there is a .zip and .csv. The .zip is a set 1km .shp tiles. The .csv is all trees in a single file. ## Prediction metadata *Geometry* A four pointed bounding box location in utm coordinates. *indiv_id* A unique crown identifier that combines the year, site and geoindex of the NEON airborne tile (e.g. 732000_4707000) is the utm coordinate of the top left of the tile.  *sci_name* The full latin name of predicted species aligned with NEON's taxonomic nomenclature.  *ens_score* The confidence score of the species prediction. This score is the output of the multi-temporal model for the ensemble hierarchical model.  *bleaf_taxa* Highest predicted category for the broadleaf submodel *bleaf_score* The confidence score for the broadleaf taxa submodel  *oak_taxa* Highest predicted category for the oak model  *dead_label* A two class alive/dead classification based on the RGB data. 0=Alive/1=Dead. *dead_score* The confidence score of the Alive/Dead prediction.  *site_id* The four letter code for the NEON site. See https://www.neonscience.org/field-sites/explore-field-sites for site locations. *conif_taxa* Highest predicted category for the conifer model *conif_score* The confidence score for the conifer taxa submodel *dom_taxa* Highest predicted category for the dominant taxa mode submodel *dom_score* The confidence score for the dominant taxa submodel ## Training data The crops.zip contains pre-cropped files. 369 band hyperspectral files are numpy arrays. RGB crops are .tif files. Naming format is __, for example. "NEON.PLA.D07.GRSM.00583_2022_RGB.tif" is RGB crop of the predicted crown of NEON data from Great Smoky Mountain National Park (GRSM), flown in 2022.Along with the crops are .csv files for various train-test split experiments for the manuscript. ### Crop metadata There are 30,042 individuals in the annotations.csv file. We keep all data, but we recommend a filtering step of atleast 20 records per species to reduce chance of taxonomic or data cleaning errors. This leaves 132 species. *score* This was the DeepForest crown score for the crop. *taxonID*For letter species code, see NEON plant taxonomy for scientific name: https://data.neonscience.org/taxonomic-lists *individual*unique individual identifier for a given field record and crown crop *siteID*The four letter code for the NEON site. See https://www.neonscience.org/field-sites/explore-field-sites for site locations. *plotID* NEON plot ID within the site. For more information on NEON sampling see: https://www.neonscience.org/data-samples/data-collection/observational-sampling/site-level-sampling-design *CHM_height* The LiDAR derived height for the field sampling point. *image_path* Relative pathname for the hyperspectral array, can be read by numpy.load -> format of 369 bands * Height * Weight *tile_year*  Flight year of the sensor data *RGB_image_path* Relative pathname for the RGB array, can be read by rasterio.open() # Code repository The predictions were made using the DeepTreeAttention repo: https://github.com/weecology/DeepTreeAttentionKey files include model definition for a [single year model](https://github.com/weecology/DeepTreeAttention/blob/main/src/models/Hang2020.py) and [Data preprocessing](https://github.com/weecology/DeepTreeAttention/blob/cae13f1e4271b5386e2379068f8239de3033ec40/src/utils.py#L59). 
    more » « less