skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Stormwater digital twin with online quality control detects urban flood hazards under uncertainty
Urban drainage systems face increased floods and combined sewer overflows due to climate change and population growth. To manage these hazards, cities are seeking stormwater digital twins that integrate sensor data with hydraulic models for real-time response. However, these efforts are complicated by unreliable sensor data, imperfect hydrologic models, and inaccurate rainfall forecasts. To address these issues, we introduce a stormwater digital twin system that uses online data assimilation to estimate stormwater depths and discharges under sensor and model uncertainty. We first derive a novel state estimation scheme based on Extended Kalman Filtering that fuses sensor data into a hydraulic model while simultaneously detecting and removing faulty measurements. The system’s accuracy is evaluated through a long-term deployment in Austin’s flood-prone Waller Creek watershed. The digital twin model demonstrates enhanced accuracy in estimating stormwater depths at ungauged locations and delivers more accurate near-term forecasts. Moreover, it effectively identifies and removes sensor faults from streaming data, achieving a Receiver Operating Characteristic Area Under the Curve (ROC AUC) of over 0.99 and significantly reducing the potential for false flood alarms. This study provides a complete software implementation, offering water managers a reliable framework for real-time monitoring, rapid flood response, predictive maintenance, and active control of sewer systems.  more » « less
Award ID(s):
2220516
PAR ID:
10560145
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Sustainable Cities and Society
Volume:
118
Issue:
C
ISSN:
2210-6707
Page Range / eLocation ID:
105982
Subject(s) / Keyword(s):
Digital twin Online stormwater model Wireless sensor networks Online quality control Threshold extended Kalman filter
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many coastal cities are facing frequent flooding from storm events that are made worse by sea level rise and climate change. The groundwater table level in these low relief coastal cities is an important, but often overlooked, factor in the recurrent flooding these locations face. Infiltration of stormwater and water intrusion due to tidal forcing can cause already shallow groundwater tables to quickly rise toward the land surface. This decreases available storage which increases runoff, stormwater system loads, and flooding. Groundwater table forecasts, which could help inform the modeling and management of coastal flooding, are generally unavailable. This study explores two machine learning models, Long Short-term Memory (LSTM) networks and Recurrent Neural Networks (RNN), to model and forecast groundwater table response to storm events in the flood prone coastal city of Norfolk, Virginia. To determine the effect of training data type on model accuracy, two types of datasets (i) the continuous time series and (ii) a dataset of only storm events, created from observed groundwater table, rainfall, and sea level data from 2010–2018 are used to train and test the models. Additionally, a real-time groundwater table forecasting scenario was carried out to compare the models’ abilities to predict groundwater table levels given forecast rainfall and sea level as input data. When modeling the groundwater table with observed data, LSTM networks were found to have more predictive skill than RNNs (root mean squared error (RMSE) of 0.09 m versus 0.14 m, respectively). The real-time forecast scenario showed that models trained only on storm event data outperformed models trained on the continuous time series data (RMSE of 0.07 m versus 0.66 m, respectively) and that LSTM outperformed RNN models. Because models trained with the continuous time series data had much higher RMSE values, they were not suitable for predicting the groundwater table in the real-time scenario when using forecast input data. These results demonstrate the first use of LSTM networks to create hourly forecasts of groundwater table in a coastal city and show they are well suited for creating operational forecasts in real-time. As groundwater table levels increase due to sea level rise, forecasts of groundwater table will become an increasingly valuable part of coastal flood modeling and management. 
    more » « less
  2. Lu, Xin; Wang, Wei; Wu, Dehao; Li, Xiaoxia (Ed.)
    In the rapidly evolving landscape of scientific semiconductor laboratories (commonly known as, cleanrooms), integrated with Internet of Things (IoT) technology and Cyber-Physical Systems (CPSs), several factors including operational changes, sensor aging, software updates and the introduction of new processes or equipment can lead to dynamic and non-stationary data distributions in evolving data streams. This phenomenon, known as concept drift, poses a substantial challenge for traditional data-driven digital twin static machine learning (ML) models for anomaly detection and classification. Subsequently, the drift in normal and anomalous data distributions over time causes the model performance to decay, resulting in high false alarm rates and missed anomalies. To address this issue, we present TWIN-ADAPT, a continuous learning model within a digital twin framework designed to dynamically update and optimize its anomaly classification algorithm in response to changing data conditions. This model is evaluated against state-of-the-art concept drift adaptation models and tested under simulated drift scenarios using diverse noise distributions to mimic real-world distribution shift in anomalies. TWIN-ADAPT is applied to three critical CPS datasets of Smart Manufacturing Labs (also known as “Cleanrooms”): Fumehood, Lithography Unit and Vacuum Pump. The evaluation results demonstrate that TWIN-ADAPT’s continual learning model for optimized and adaptive anomaly classification achieves a high accuracy and F1 score of 96.97% and 0.97, respectively, on the Fumehood CPS dataset, showing an average performance improvement of 0.57% over the offline model. For the Lithography and Vacuum Pump datasets, TWIN-ADAPT achieves an average accuracy of 69.26% and 71.92%, respectively, with performance improvements of 75.60% and 10.42% over the offline model. These significant improvements highlight the efficacy of TWIN-ADAPT’s adaptive capabilities. Additionally, TWIN-ADAPT shows a very competitive performance when compared with other benchmark drift adaptation algorithms. This performance demonstrates TWIN-ADAPT’s robustness across different modalities and datasets, confirming its suitability for any IoT-driven CPS framework managing diverse data distributions in real time streams. Its adaptability and effectiveness make it a versatile tool for dynamic industrial settings. 
    more » « less
  3. null (Ed.)
    Flooding in many areas is becoming more prevalent due to factors such as urbanization and climate change, requiring modernization of stormwater infrastructure. Retrofitting standard passive systems with controllable valves/pumps is promising, but requires real-time control (RTC). One method of automating RTC is reinforcement learning (RL), a general technique for sequential optimization and control in uncertain environments. The notion is that an RL algorithm can use inputs of real-time flood data and rainfall forecasts to learn a policy for controlling the stormwater infrastructure to minimize measures of flooding. In real-world conditions, rainfall forecasts and other state information are subject to noise and uncertainty. To account for these characteristics of the problem data, we implemented Deep Deterministic Policy Gradient (DDPG), an RL algorithm that is distinguished by its capability to handle noise in the input data. DDPG implementations were trained and tested against a passive flood control policy. Three primary cases were studied: (i) perfect data, (ii) imperfect rainfall forecasts, and (iii) imperfect water level and forecast data. Rainfall episodes (100) that caused flooding in the passive system were selected from 10 years of observations in Norfolk, Virginia, USA; 85 randomly selected episodes were used for training and the remaining 15 unseen episodes served as test cases. Compared to the passive system, all RL implementations reduced flooding volume by 70.5% on average, and performed within a range of 5%. This suggests that DDPG is robust to noisy input data, which is essential knowledge to advance the real-world applicability of RL for stormwater RTC. 
    more » « less
  4. Leveraging recent advances in technologies surrounding the Internet of Things , “smart” water systems are poised to transform water resources management by enabling ubiquitous real-time sensing and control. Recent applications have demonstrated the potential to improve flood forecasting, enhance rainwater harvesting, and prevent combined sewer overflows. However, adoption of smart water systems has been hindered by a limited number of proven case studies, along with a lack of guidance on how smart water systems should be built. To this end, we review existing solutions, and introduce open storm —an open-source, end-to-end platform for real-time monitoring and control of watersheds. Open storm includes (i) a robust hardware stack for distributed sensing and control in harsh environments (ii) a cloud services platform that enables system-level supervision and coordination of water assets, and (iii) a comprehensive, web-based “how-to” guide, available on open-storm.org, that empowers newcomers to develop and deploy their own smart water networks. We illustrate the capabilities of the open storm platform through two ongoing deployments: (i) a high-resolution flash-flood monitoring network that detects and communicates flood hazards at the level of individual roadways and (ii) a real-time stormwater control network that actively modulates discharges from stormwater facilities to improve water quality and reduce stream erosion. Through these case studies, we demonstrate the real-world potential for smart water systems to enable sustainable management of water resources. 
    more » « less
  5. Low-lying coastal cities across the world are increasingly seeing flooding due to climate change and accompanying sea-level rise. Many such cities rely on old and passive stormwater infrastructure which cannot cope up with the increasing flood risk. One potential solution for addressing coastal flooding is implementing active control strategies in stormwater systems. Active stormwater control relies on rule-based strategies, which is not able to manage the increasing flood risk. Model predictive control (MPC) for stormwater flood management is getting attention over the past decade. However, building physics-based models for MPC in stormwater management is cost and time prohibitive. In this paper, we develop a data-driven approach, which utilizes unstructured state-space models for system identification and predictive control implementation. We demonstrate our results using two real stormwater network configurations, one from the Norfolk, VA region and another model of Ann Arbor region, MI, respectively. Our results indicate that MPC outperforms rule-based strategies by up to 60% of the Norfolk model and up to 90% of the Ann Arbor model in flood management. 
    more » « less