This repository contains the results of a hierarchical atomic resolution perception (HARP) calculation on each of the cryoEM structures deposited in the Protein Data Bank (PDB) prior to January 1, 2023. Top-level group names are the PDB IDs of the structures. HDF5 group attributes for each entry are certain metadata extracted from the mmCIF files associated with each entry. HDF5 datasets within each group are indexed relative to each other (i.e., are of the same length).
more »
« less
Scale-dependent hierarchical resolution: applications to atomic resolution and model validation in cryoEM
The recent cryoEM resolution revolution has had a tremendous impact on our ability to investigate biomolecular structure and function. However, outstanding questions about the reliability of using a cryoEM-derived molecular model for interpreting experiments and building further hypotheses limit its full impact. Significant amounts of research have been focused on developing metrics to assess cryoEM model quality, yet no consensus exists. This is in part because the meaning of cryoEM model quality is not well defined. In this work, we formalize cryoEM model quality in terms of whether a cryoEM map is better described by a model with localized atomic coordinates or by a lower-resolution model that lacks atomic-level information. This approach emerges from a novel, quantitative definition of image resolution based upon the hierarchical structure of biomolecules, which enables computational selection of the length scale to which a biomolecule is resolved based upon the available evidence embedded in the experimental data. In the context of cryoEM, we develop a machine learning-based implementation of this framework, called hierarchical atomic resolution perception (HARP), for assessing local atomic resolution in a cryoEM map and thus evaluating cryoEM model quality in a theoretically and statistically well-defined manner. Finally, using HARP, we perform a meta-analysis of the cryoEM-derived structures in the Protein Data Bank (PDB) to assess the state of atomic resolution in the field and quantify factors that affect it.
more »
« less
- Award ID(s):
- 2137630
- PAR ID:
- 10560635
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This paper describes outcomes of the 2019 Cryo-EM Model Challenge. The goals were to (1) assess the quality of models that can be produced from cryogenic electron microscopy (cryo-EM) maps using current modeling software, (2) evaluate reproducibility of modeling results from different software developers and users and (3) compare performance of current metrics used for model evaluation, particularly Fit-to-Map metrics, with focus on near-atomic resolution. Our findings demonstrate the relatively high accuracy and reproducibility of cryo-EM models derived by 13 participating teams from four benchmark maps, including three forming a resolution series (1.8 to 3.1 Å). The results permit specific recommendations to be made about validating near-atomic cryo-EM structures both in the context of individual experiments and structure data archives such as the Protein Data Bank. We recommend the adoption of multiple scoring parameters to provide full and objective annotation and assessment of the model, reflective of the observed cryo-EM map density.more » « less
-
In cryogenic electron microscopy (cryoEM), purified macromolecules are applied to a grid bearing a holey carbon foil; the molecules are then blotted to remove excess liquid and rapidly frozen in a roughly 20-100 nm thick layer of vitreous ice, suspended across roughly 1 µm wide foil holes. The resulting sample is imaged using cryogenic transmission electron microscopy, and after image processing using suitable software, near-atomic resolution structures can be determined. Despite cryoEM's widespread adoption, sample preparation remains a severe bottleneck in cryoEM workflows, with users often encountering challenges related to samples behaving poorly in the suspended vitreous ice. Recently, methods have been developed to modify cryoEM grids with a single continuous layer of graphene, which acts as a support surface that often increases particle density in the imaged area and can reduce interactions between particles and the air-water interface. Here, we provide detailed protocols for the application of graphene to cryoEM grids and for rapidly assessing the relative hydrophilicity of the resulting grids. Additionally, we describe an EM-based method to confirm the presence of graphene by visualizing its characteristic diffraction pattern. Finally, we demonstrate the utility of these graphene supports by rapidly reconstructing a 2.7 Å resolution density map of a Cas9 complex using a pure sample at a relatively low concentration.more » « less
-
Low-resolution coarse-grained (CG) models provide significant computational and conceptual advantages for simulating soft materials. However, the properties of CG models depend quite sensitively upon the mapping, M, that maps each atomic configuration, r, to a CG configuration, R. In particular, M determines how the configurational information of the atomic model is partitioned between the mapped ensemble of CG configurations and the lost ensemble of atomic configurations that map to each R. In this work, we investigate how the mapping partitions the atomic configuration space into CG and intra-site components. We demonstrate that the corresponding coordinate transformation introduces a nontrivial Jacobian factor. This Jacobian factor defines a labeling entropy that corresponds to the uncertainty in the atoms that are associated with each CG site. Consequently, the labeling entropy effectively transfers configurational information from the lost ensemble into the mapped ensemble. Moreover, our analysis highlights the possibility of resonant mappings that separate the atomic potential into CG and intra-site contributions. We numerically illustrate these considerations with a Gaussian network model for the equilibrium fluctuations of actin. We demonstrate that the spectral quality, Q, provides a simple metric for identifying high quality representations for actin. Conversely, we find that neither maximizing nor minimizing the information content of the mapped ensemble results in high quality representations. However, if one accounts for the labeling uncertainty, Q(M) correlates quite well with the adjusted configurational information loss, Îmap(M), that results from the mapping.more » « less
-
Abstract Many protein-protein interactions behave differently in biochemically purified forms as compared to theirin vivostates. As such, determining native protein structures may elucidate structural states previously unknown for even well-characterized proteins. Here we apply the bottom-up structural proteomics method,cryoID, toward a model methanogenic archaeon. While they are keystone organisms in the global carbon cycle and active members of the human microbiome, there is a general lack of characterization of methanogen enzyme structure and function. Through thecryoIDapproach, we successfully reconstructed and identified the nativeMethanosarcina acetivoranspyridoxal 5’-phosphate (PLP) synthase (PdxS) complex directly from cryogenic electron microscopy (cryoEM) images of fractionated cellular lysate. We found that the native PdxS complex exists as a homo-dodecamer of PdxS subunits, and the previously proposed supracomplex containing both the synthase (PdxS) and glutaminase (PdxT) was not observed in cellular lysate. Our structure shows that the native PdxS monomer fashions a single 8α/8β TIM-barrel domain, surrounded by seven additional helices to mediate solvent and interface contacts. A density is present at the active site in the cryoEM map and is interpreted as ribose 5-phosphate. In addition to being the first reconstruction of the PdxS enzyme from a heterogeneous cellular sample, our results reveal a departure from previously published archaeal PdxS crystal structures, lacking the 37 amino acid insertion present in these prior cases. This study demonstrates the potential of applying thecryoIDworkflow to capture native structural states at atomic resolution for archaeal systems, for which traditional biochemical sample preparation is nontrivial.more » « less
An official website of the United States government

