Abstract Recent demonstrations of moiré magnetism, featuring exotic phases with noncollinear spin order in the twisted van der Waals (vdW) magnet chromium triiodide CrI3, have highlighted the potential of twist engineering of magnetic (vdW) materials. However, the local magnetic interactions, spin dynamics, and magnetic phase transitions within and across individual moiré supercells remain elusive. Taking advantage of a scanning single-spin magnetometry platform, here we report observation of two distinct magnetic phase transitions with separate critical temperatures within a moiré supercell of small-angle twisted double trilayer CrI3. By measuring temperature-dependent spin fluctuations at the coexisting ferromagnetic and antiferromagnetic regions in twisted CrI3, we explicitly show that the Curie temperature of the ferromagnetic state is higher than the Néel temperature of the antiferromagnetic one by ~10 K. Our mean-field calculations attribute such a spatial and thermodynamic phase separation to the stacking order modulated interlayer exchange coupling at the twisted interface of moiré superlattices.
more »
« less
Noncentrosymmetric Triangular Magnet CaMnTeO 6 : Strong Quantum Fluctuations and Role of s 0 versus s 2 Electronic States in Competing Exchange Interactions
Abstract Noncentrosymmetric triangular magnets offer a unique platform for realizing strong quantum fluctuations. However, designing these quantum materials remains an open challenge attributable to a knowledge gap in the tunability of competing exchange interactions at the atomic level. Here, a new noncentrosymmetric triangularS = 3/2 magnet CaMnTeO6is created based on careful chemical and physical considerations. The model material displays competing magnetic interactions and features nonlinear optical responses with the capability of generating coherent photons. The incommensurate magnetic ground state of CaMnTeO6with an unusually large spin rotation angle of 127°(1) indicates that the anisotropic interlayer exchange is strong and competing with the isotropic interlayer Heisenberg interaction. The moment of 1.39(1) µB, extracted from low‐temperature heat capacity and neutron diffraction measurements, is only 46% of the expected value of the static moment 3 µB. This reduction indicates the presence of strong quantum fluctuations in the half‐integer spinS = 3/2 CaMnTeO6magnet, which is rare. By comparing the spin‐polarized band structure, chemical bonding, and physical properties of AMnTeO6(A = Ca, Sr, Pb), how quantum‐chemical interpretation can illuminate insights into the fundamentals of magnetic exchange interactions, providing a powerful tool for modulating spin dynamics with atomically precise control is demonstrated.
more »
« less
- PAR ID:
- 10560752
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Advanced Materials
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Motivated by the recent developments in moiré superlattices of van der Waals magnets and the desire to control the magnetic interactions of α-RuCl3, here we present a comprehensive theory of the long-range ordered magnetic phases of twisted bilayer α-RuCl3. Using a combination of first-principles calculations and atomistic simulations, we show that the stacking-dependent interlayer exchange gives rise to an array of magnetic phases that can be realized by controlling the twist angle. In particular, we discover a complex hexagonal domain structure in which multiple zigzag orders coexist. This multidomain order minimizes the interlayer energy while enduring the energy cost due to domain wall formation. Further, we show that quantum fluctuations can be enhanced across the phase transitions. Our results indicate that magnetic frustration due to stacking-dependent interlayer exchange in moiré superlattices can be exploited to tune quantum fluctuations and the magnetic ground state of α-RuCl3.more » « less
-
We present a combined experimental and density functional theory study that characterizes the charge and spin density in NiX2(3,5-lutidine)4(X= Cl, Br and I). In this material, magnetic exchange interactions occur via Ni2+–halide...halide–Ni2+pathways, forming one-dimensional chains. We find evidence for weak halide...halide covalency in the iodine system, which is greatly reduced whenX= Br and is absent forX= Cl; this is consistent with the reported `switching-on' of magnetic exchange in the larger-halide cases. Our results are benchmarked against density functional theory calculations on [NiHF2(pyrazine)2]SbF6, in which the primary magnetic exchange is mediated by F–H–F bridging ligands. This comparison indicates that, despite the largely depleted charge density found at the centre of halide...halide bonds, these through-space interactions can support strong magnetic exchange gated by weak covalency and enhanced by significant electron density overlapping that of the transition metal centres.more » « less
-
Abstract We use elastic and inelastic neutron scattering (INS) to study the antiferromagnetic (AF) phase transitions and spin excitations in the two-dimensional (2D) zig-zag antiferromagnet FePSe3. By determining the magnetic order parameter across the AF phase transition, we conclude that the AF phase transition in FePSe3is first-order in nature. In addition, our INS measurements reveal that the spin waves in the AF ordered state have a large easy-axis magnetic anisotropy gap, consistent with an Ising Hamiltonian, and possible biquadratic magnetic exchange interactions. On warming acrossTN, we find that dispersive spin excitations associated with three-fold rotational symmetric AF fluctuations change into FM spin fluctuations aboveTN. These results suggest that the first-order AF phase transition in FePSe3may arise from the competition betweenC3symmetric AF andC1symmetric FM spin fluctuations aroundTN, in place of a conventional second-order AF phase transition.more » « less
-
Moiré superlattices of twisted nonmagnetic two-dimensional (2D) materials are highly controllable platforms for the engineering of exotic correlated and topological states. Here, we report emerging magnetic textures in small-angle twisted 2D magnet chromium triiodide (CrI 3 ). Using single-spin quantum magnetometry, we directly visualized nanoscale magnetic domains and periodic patterns, a signature of moiré magnetism, and measured domain size and magnetization. In twisted bilayer CrI 3 , we observed the coexistence of antiferromagnetic (AFM) and ferromagnetic (FM) domains with disorder-like spatial patterns. In twisted double-trilayer CrI 3 , AFM and FM domains with periodic patterns appear, which is in good agreement with the calculated spatial magnetic structures that arise from the local stacking-dependent interlayer exchange interactions in CrI 3 moiré superlattices. Our results highlight magnetic moiré superlattices as a platform for exploring nanomagnetism.more » « less
An official website of the United States government

