Abstract The recurrence of epidemic waves has been a hallmark of infectious disease outbreaks. Repeated surges in infections pose significant challenges to public health systems, yet the mechanisms that drive these waves remain insufficiently understood. Most prior models attribute epidemic waves to exogenous factors, such as transmission seasonality, viral mutations, or implementation of public health interventions. We show that epidemic waves can emerge autonomously from the feedback loop between infection dynamics and human behavior. Our results are based on a behavioral framework in which individuals continuously adjust their level of risk mitigation subject to their perceived risk of infection, which depends on information availability and disease severity. We show that delayed behavioral responses alone can lead to the emergence of multiple epidemic waves. The magnitude and frequency of these waves depend on the interplay between behavioral factors (delay, severity, and sensitivity of responses) and disease factors (transmission and recovery rates). Notably, if the response is either too prompt or excessively delayed, multiple waves cannot emerge. Our results further align with previous observations that adaptive human behavior can produce nonmonotonic final epidemic sizes, shaped by the trade-offs between various biological and behavioral factors—namely, risk sensitivity, response stringency, and disease generation time. Interestingly, we found that the minimal final epidemic size occurs on regimes that exhibit a few damped oscillations. Altogether, our results emphasize the importance of integrating social and operational factors into infectious disease models, in order to capture the joint evolution of adaptive behavioral responses and epidemic dynamics.
more »
« less
This content will become publicly available on February 1, 2026
A simultaneous simulation of human behavior dynamics and epidemic spread: A multi-country study amidst the COVID-19 pandemic
The transmission dynamics of infectious diseases and human responses are intertwined, forming complex feedback loops. However, many epidemic models fail to endogenously represent human behavior change. In this study, we introduce a novel behavioral epidemic model that incorporates various behavioral phenomena into SEIR models, including risk-response dynamics, shifts in containment policies, adherence fatigue, and societal learning, alongside disease transmission dynamics. By testing our model against data from 8 countries, where extensive behavioral data were available, we simultaneously replicate death rates, mobility trends, fatigue levels, and policy changes, both in-sample and out-of-sample. Our model offers a comprehensive depiction of changes in multiple behavioral measures along with the spread of the disease. We assess the explanatory power of each model mechanism in capturing data variability. Our findings demonstrate that the comprehensive model that includes all mechanisms provides the most insightful perspective for understanding the influence of human behavior during pandemics.
more »
« less
- Award ID(s):
- 2229819
- PAR ID:
- 10560782
- Publisher / Repository:
- Mathematical Biosciences
- Date Published:
- Journal Name:
- Mathematical Biosciences
- Volume:
- 380
- Issue:
- C
- ISSN:
- 0025-5564
- Page Range / eLocation ID:
- 109368
- Subject(s) / Keyword(s):
- COVID-19 Epidemic modeling System dynamics Model validation Human behavior
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Struchiner, Claudio José (Ed.)Behavioral epidemic models incorporating endogenous societal risk-response, where changes in risk perceptions prompt adjustments in contact rates, are crucial for predicting pandemic trajectories. Accurate parameter estimation in these models is vital for validation and precise projections. However, few studies have examined the problem of identifiability in models where disease and behavior parameters must be jointly estimated. To address this gap, we conduct simulation experiments to assess the effect on parameter estimation accuracy of a) delayed risk response, b) neglecting behavioral response in model structure, and c) integrating disease and public behavior data. Our findings reveal systematic biases in estimating behavior parameters even with comprehensive and accurate disease data and a well-structured simulation model when data are limited to the first wave. This is due to the significant delay between evolving risks and societal reactions, corresponding to the duration of a pandemic wave. Moreover, we demonstrate that conventional SEIR models, which disregard behavioral changes, may fit well in the early stages of a pandemic but exhibit significant errors after the initial peak. Furthermore, early on, relatively small data samples of public behavior, such as mobility, can significantly improve estimation accuracy. However, the marginal benefits decline as the pandemic progresses. These results highlight the challenges associated with the joint estimation of disease and behavior parameters in a behavioral epidemic model.more » « less
-
Woźniakowski, Grzegorz (Ed.)Human behavioral change around biosecurity in response to increased awareness of disease risks is a critical factor in modeling animal disease dynamics. Here, biosecurity is referred to as implementing control measures to decrease the chance of animal disease spreading. However, social dynamics are largely ignored in traditional livestock disease models. Not accounting for these dynamics may lead to substantial bias in the predicted epidemic trajectory. In this research, an agent-based model is developed by integrating the human decision-making process into epidemiological processes. We simulate human behavioral change on biosecurity practices following an increase in the regional disease incidence. We apply the model to beef cattle production systems in southwest Kansas, United States, to examine the impact of human behavior factors on a hypothetical foot-and-mouth disease outbreak. The simulation results indicate that heterogeneity of individuals regarding risk attitudes significantly affects the epidemic dynamics, and human-behavior factors need to be considered for improved epidemic forecasting. With the same initial biosecurity status, increasing the percentage of risk-averse producers in the total population using a targeted strategy can more effectively reduce the number of infected producer locations and cattle losses compared to a random strategy. In addition, the reduction in epidemic size caused by the shifting of producers’ risk attitudes towards risk-aversion is heavily dependent on the initial biosecurity level. A comprehensive investigation of the initial biosecurity status is recommended to inform risk communication strategy design.more » « less
-
Nonpharmaceutical interventions (NPIs) such as mask wearing can be effective in mitigating the spread of infectious diseases. Therefore, understanding the behavioral dynamics of NPIs is critical for characterizing the dynamics of disease spread. Nevertheless, standard infection models tend to focus only on disease states, overlooking the dynamics of “beneficial contagions,” e.g., compliance with NPIs. In this work, we investigate the concurrent spread of disease and mask-wearing behavior over multiplex networks. Our proposed framework captures both the competing and complementary relationships between the dueling contagion processes. Further, the model accounts for various behavioral mechanisms that influence mask wearing, such as peer pressure and fear of infection. Our results reveal that under the coupled disease–behavior dynamics, the attack rate of a disease—as a function of transition probability—exhibits a critical transition. Specifically, as the transmission probability exceeds a critical threshold, the attack rate decreases abruptly due to sustained mask-wearing responses. We empirically explore the causes of the critical transition and demonstrate the robustness of the observed phenomena. Our results highlight that without proper enforcement of NPIs, reductions in the disease transmission probability via other interventions may not be sufficient to reduce the final epidemic size.more » « less
-
The multiple immunity responses exhibited in the population and co-circulating variants documented during pandemics show a high potential to generate diverse long-term epidemiological scenarios. Transmission variability, immune uncertainties and human behaviour are crucial features for the predictability and implementation of effective mitigation strategies. Nonetheless, the effects of individual health incentives on disease dynamics are not well understood. We use a behavioural-immuno-epidemiological model to study the joint evolution of human behaviour and epidemic dynamics for different immunity scenarios. Our results reveal a trade-off between the individuals’ immunity levels and the behavioural responses produced. We find that adaptive human behaviour can avoid dynamical resonance by avoiding large outbreaks, producing subsequent uniform outbreaks. Our forward-looking behaviour model shows an optimal planning horizon that minimizes the epidemic burden by balancing the individual risk–benefit trade-off. We find that adaptive human behaviour can compensate for differential immunity levels, equalizing the epidemic dynamics for scenarios with diverse underlying immunity landscapes. Our model can adequately capture complex empirical behavioural dynamics observed during pandemics. We tested our model for different US states during the COVID-19 pandemic. Finally, we explored extensions of our modelling framework that incorporate the effects of lockdowns, the emergence of a novel variant, prosocial attitudes and pandemic fatigue.more » « less
An official website of the United States government
