The transmission dynamics of infectious diseases and human responses are intertwined, forming complex feedback loops. However, many epidemic models fail to endogenously represent human behavior change. In this study, we introduce a novel behavioral epidemic model that incorporates various behavioral phenomena into SEIR models, including risk-response dynamics, shifts in containment policies, adherence fatigue, and societal learning, alongside disease transmission dynamics. By testing our model against data from 8 countries, where extensive behavioral data were available, we simultaneously replicate death rates, mobility trends, fatigue levels, and policy changes, both in-sample and out-of-sample. Our model offers a comprehensive depiction of changes in multiple behavioral measures along with the spread of the disease. We assess the explanatory power of each model mechanism in capturing data variability. Our findings demonstrate that the comprehensive model that includes all mechanisms provides the most insightful perspective for understanding the influence of human behavior during pandemics.
more »
« less
Parameter estimation in behavioral epidemic models with endogenous societal risk-response
Behavioral epidemic models incorporating endogenous societal risk-response, where changes in risk perceptions prompt adjustments in contact rates, are crucial for predicting pandemic trajectories. Accurate parameter estimation in these models is vital for validation and precise projections. However, few studies have examined the problem of identifiability in models where disease and behavior parameters must be jointly estimated. To address this gap, we conduct simulation experiments to assess the effect on parameter estimation accuracy of a) delayed risk response, b) neglecting behavioral response in model structure, and c) integrating disease and public behavior data. Our findings reveal systematic biases in estimating behavior parameters even with comprehensive and accurate disease data and a well-structured simulation model when data are limited to the first wave. This is due to the significant delay between evolving risks and societal reactions, corresponding to the duration of a pandemic wave. Moreover, we demonstrate that conventional SEIR models, which disregard behavioral changes, may fit well in the early stages of a pandemic but exhibit significant errors after the initial peak. Furthermore, early on, relatively small data samples of public behavior, such as mobility, can significantly improve estimation accuracy. However, the marginal benefits decline as the pandemic progresses. These results highlight the challenges associated with the joint estimation of disease and behavior parameters in a behavioral epidemic model.
more »
« less
- Award ID(s):
- 2229819
- PAR ID:
- 10535886
- Editor(s):
- Struchiner, Claudio José
- Publisher / Repository:
- PLoS Computational Biology
- Date Published:
- Journal Name:
- PLOS Computational Biology
- Volume:
- 20
- Issue:
- 3
- ISSN:
- 1553-7358
- Page Range / eLocation ID:
- e1011992
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The recent pandemic emphasized the need to consider the role of human behavior in shaping epidemic dynamics. In particular, it is necessary to extend beyond the classical epidemiological structures to fully capture the interplay between the spread of disease and how people respond. Here, we focus on the challenge of incorporating change in human behavior in the form of “risk response” into compartmental epidemiological models, where humans adapt their actions in response to their perceived risk of becoming infected. The review examines 37 papers containing over 40 compartmental models, categorizing them into two fundamentally distinct classes: exogenous and endogenous approaches to modeling risk response. While in exogenous approaches, human behavior is often included using different fixed parameter values for certain time periods, endogenous approaches seek for a mechanism internal to the model to explain changes in human behavior as a function of the state of disease. We further discuss two different formulations within endogenous models as implicit versus explicit representation of information diffusion. This analysis provides insights for modelers in selecting an appropriate framework for epidemic modeling.more » « less
-
Abstract The recurrence of epidemic waves has been a hallmark of infectious disease outbreaks. Repeated surges in infections pose significant challenges to public health systems, yet the mechanisms that drive these waves remain insufficiently understood. Most prior models attribute epidemic waves to exogenous factors, such as transmission seasonality, viral mutations, or implementation of public health interventions. We show that epidemic waves can emerge autonomously from the feedback loop between infection dynamics and human behavior. Our results are based on a behavioral framework in which individuals continuously adjust their level of risk mitigation subject to their perceived risk of infection, which depends on information availability and disease severity. We show that delayed behavioral responses alone can lead to the emergence of multiple epidemic waves. The magnitude and frequency of these waves depend on the interplay between behavioral factors (delay, severity, and sensitivity of responses) and disease factors (transmission and recovery rates). Notably, if the response is either too prompt or excessively delayed, multiple waves cannot emerge. Our results further align with previous observations that adaptive human behavior can produce nonmonotonic final epidemic sizes, shaped by the trade-offs between various biological and behavioral factors—namely, risk sensitivity, response stringency, and disease generation time. Interestingly, we found that the minimal final epidemic size occurs on regimes that exhibit a few damped oscillations. Altogether, our results emphasize the importance of integrating social and operational factors into infectious disease models, in order to capture the joint evolution of adaptive behavioral responses and epidemic dynamics.more » « less
-
Abstract The estimation of unknown parameters in simulations, also known as calibration, is crucial for practical management of epidemics and prediction of pandemic risk. A simple yet widely used approach is to estimate the parameters by minimising the sum of the squared distances between actual observations and simulation outputs. It is shown in this paper that this method is inefficient, particularly when the epidemic models are developed based on certain simplifications of reality, also known as imperfect models which are commonly used in practice. To address this issue, a new estimator is introduced that is asymptotically consistent, has a smaller estimation variance than the least-squares estimator, and achieves the semiparametric efficiency. Numerical studies are performed to examine the finite sample performance. The proposed method is applied to the analysis of the COVID-19 pandemic for 20 countries based on the susceptible-exposed-infectious-recovered model with both deterministic and stochastic simulations. The estimation of the parameters, including the basic reproduction number and the average incubation period, reveal the risk of disease outbreaks in each country and provide insights to the design of public health interventions.more » « less
-
Woźniakowski, Grzegorz (Ed.)Human behavioral change around biosecurity in response to increased awareness of disease risks is a critical factor in modeling animal disease dynamics. Here, biosecurity is referred to as implementing control measures to decrease the chance of animal disease spreading. However, social dynamics are largely ignored in traditional livestock disease models. Not accounting for these dynamics may lead to substantial bias in the predicted epidemic trajectory. In this research, an agent-based model is developed by integrating the human decision-making process into epidemiological processes. We simulate human behavioral change on biosecurity practices following an increase in the regional disease incidence. We apply the model to beef cattle production systems in southwest Kansas, United States, to examine the impact of human behavior factors on a hypothetical foot-and-mouth disease outbreak. The simulation results indicate that heterogeneity of individuals regarding risk attitudes significantly affects the epidemic dynamics, and human-behavior factors need to be considered for improved epidemic forecasting. With the same initial biosecurity status, increasing the percentage of risk-averse producers in the total population using a targeted strategy can more effectively reduce the number of infected producer locations and cattle losses compared to a random strategy. In addition, the reduction in epidemic size caused by the shifting of producers’ risk attitudes towards risk-aversion is heavily dependent on the initial biosecurity level. A comprehensive investigation of the initial biosecurity status is recommended to inform risk communication strategy design.more » « less
An official website of the United States government

