skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 9, 2025

Title: Microscale Templating of Functional Particles Using Self‐Limiting Electrospray Deposition
Electrospray deposition (ESD) uses strong electric fields applied to solutions and dispersions exiting a capillary to produce charged monodisperse droplets driven toward grounded targets. Self‐limiting electrospray deposition (SLED) is a phenomenon in which highly directed, uniform, and even 3D coatings can be achieved by trapping charge in the deposited film, redirecting the field lines to uncoated regions of the target. However, when inorganic particles are added to SLED sprays, the buildup of charge required to repel incoming material is disrupted as particle loading increases. Due to its fibril gelling behavior, methylcellulose (MC) SLED can form nanowire morphologies. These wires, when used as a binder, can separate particles and prevent percolation. In this work, a variety of conductive and insulating particles are explored using patterned and un‐patterned substrates. This exploration allows us to maximally load particles for high‐concentration and highly controlled self‐limiting functional sprays. This is demonstrated using Ti3C2Tx MXene to functionalize an interdigitated electrode for use as a supercapacitor.  more » « less
Award ID(s):
2019849 1911518
PAR ID:
10561640
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Small
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Electrospray deposition (ESD) applies a high voltage to liquids flowing through narrow capillaries to produce monodisperse generations of droplets down to hundreds of nanometers in diameter, each carrying a small amount of the delivered solute. This deposition method has been combined with insulated stencil masks for fabricating micropatterns by spraying solutions containing nanoparticles, polymers, or biomaterials. To optimize the fabrication process for micro-coatings, a self-limiting electrospray deposition (SLED) method has recently been developed. Here, we combine SLED with a pre-existing patterned polymer film to study SLED’s fundamental behavior in a bilayer geometry. SLED has been observed when glassy insulating materials are sprayed onto conductive substrates, where a thickness-limited film forms as charge accumulates and repels the arrival of additional charged droplets. In this study, polystyrene (PS), Parylene C, and SU-8 thin films of varying thickness on silicon are utilized as insulated spraying substrates. Polyvinylpyrrolidone (PVP), a thermoplastic polymer is sprayed below its glass transition temperature (T g ) to investigate the SLED behavior on the pre-deposited insulating films. Furthermore, to examine the effects of in-plane confinement on the spray, a microhole array patterned onto the PS thin film by laser dewetting was sprayed with dyed PVP in the SLED mode. This was then extended to an unmasked electrode array showing that masked SLED and laser dewetting could be used to target microscale regions of conventionally-patterned electronics. 
    more » « less
  2. Electrospray deposition (ESD) uses strong electric fields to produce generations of monodisperse droplets from solutions and dispersions that are driven toward grounded substrates. When soft materials are delivered, the behavior of the growing film depends on the film’s ability to dissipate charge, which is strongly tied to its mobility for dielectric materials. Accordingly, there exist three regimes of electrospray: electrowetting, charged melt, and self-limiting. In the self-limiting regime, it has been recently shown that the targeted nature of these sprays allows for corona-free 3D coating. While ESD patterning on the micron-scale has been studied for decades, most typically through the use of insulating masks, there has been no comparative study of this phenomenon across spray regimes. Here, we used test-patterns composed of gratings that range in both feature size (30–240 μm) and spacing (⅓x–9x) to compare materials across regimes. The sprayed patterns were scanned using a profilometer, and the density, average height, and specificity were extracted. From these results, it was demonstrated that material deposited in the self-limiting regime showed the highest uniformity and specificity on small features as compared to electrowetting and charged melt sprays. Self-limiting electrospray deposition is, therefore, the best suited for modification of prefabricated electrode patterns. 
    more » « less
  3. Electrospray deposition (ESD) is employed to produce separator membranes for coin-cell lithium-ion batteries (LIBs) using off-the-shelf polyimide (PI). The PI coatings are deposited directly onto planar LiNi0.6Mn0.2Co0.2O2 (NMC) electrodes via self-limiting electrospray deposition (SLED). Scanning electron microscopy (SEM), optical microscopy, and spectroscopic microreflectometry are implemented in combination to evaluate the porosity, thickness, and morphology of sprayed PI films. Furthermore, ultraviolet-visual wavelength spectroscopy (UV vis) is utilized to qualitatively assess variation in film porosity within a temperature range of 20-400oC, to determine the stable temperature range of the separator. UV vis results underscore the ability of the SLED PI separator to maintain its porous microstructure up to ~350oC. Electrochemical performance of the PI separators is analyzed via charge/discharge cycle rate tests. Discharge capacities of the SLED PI separators are within 83-99.8% of commercial Celgard 2325 PP/PE/PP separators. This study points to the unique possibility of SLED as a separator manufacturing technique for geometrically complex energy storage systems. Further research is needed to optimize the polymer-solvent system to enhance control of porosity, pore size, and coating thickness. This can lead to significant improvement in rate and cycle life performance in more advanced energy storage devices. 
    more » « less
  4. Abstract We establish a sample‐ and data‐processing pipeline that allows for high‐throughput optical microscope measurement of porous films, provided they are sufficiently optically scattering. Here, self‐limiting electrospray deposition (SLED) is used to manufacture scattering films of different morphologies. This technique compensates for the scattering of the films through background subtraction of the reflection image with the transmission image. This process is implemented through a combination of an ImageJ and MATLAB data pipeline; the Canny edge‐detector is used as the image‐processing algorithm to identify the boundaries of the film. This process is verified against manually measured images; a comparative study between cross‐sectional scanning electron microscopy (where scattering effects are diminished) and optical microscopy also verifies that our optical microscopy technique can be used to consistently, non‐destructively measure film thickness regardless of film morphology. In addition, this technique can be used in combination with dense film measurements to measure film porosity. 
    more » « less
  5. null (Ed.)
    Melting gels are a class of hybrid organic-inorganic silica based gels prepared via the sol-gel process that are solid below their glass transition temperatures, near room temperature, but show thermoplastic behavior when heated. While this phase change can be repeated multiple times, heating the gel past its consolidation temperatures, typically above 130 oC initiates an irreversible reaction that produces highly crosslinked glassy organic-inorganic materials via hydrolysis and poly-condensation. This ability makes melting gels uniquely compatible with processing techniques inaccessible to other sol-gels. By properly tuning their properties, it should be possible to create protective coatings for electronics and anti-corrosive coatings for metals that are highly hydrophobic and insulating. However, melting gel consolidation reactions are highly dependent on charge interactions, raising the question of how these materials will respond to a processing technique, like electrospray deposition (ESD), which is dependent on charge delivery. In this study, we focus on the role that substrate temperature and charge polarity play on film morphology, consolidation chemistry, and surface properties. Optical images, film thickness measurements, nanoindentation, and FTIR were used to characterize the sprayed melting gel with the goal of developing a robust processing space for producing highly cross linked, hydrophobic, dielectric coatings. 
    more » « less