A key challenge in engineering design problem framing is defining requirements and metrics. This is difficult, in part, because engineers must make decisions about how to treat qualitative and subjective issues, like stakeholder preferences, about how to prioritize different requirements, and about how to maintain tentativeness and ill-structuredness in the solution space. And this is made more challenging in light of the function of requirements in other types of engineering problems, like feasibility analysis, in which the requirements should converge on a decision. Given these challenges, it is unsurprising that there is limited research on how first-year students approach such work, how they make sense of requirements, and how their conceptualizations of requirements change with instruction. Our purpose in this study is to investigate students’ initial understanding and use of engineering requirements in a specific problem solving context. We developed a survey to measure students’ perceptions related to engineering requirements based on constructs derived from the literature on engineering requirements. We implemented the survey in a first-year and in senior courses for the purpose of validating items using factor analysis. Following this, we conducted analysis of survey and interview data restricted to the first-year course, including epistemic beliefs and analysis of students’ agency. Through exploratory factor analysis, we found that factors did not converge around constructs as described in the literature. Rather, factors formed around the forms of information leveraged to develop requirements. Through qualitative analysis of students’ responses on the survey and to interviews, we evaluated the extent to which students expressed agency over their use of requirements to make decisions within a course project. We describe implications of this exploratory study in terms of adapting research instruments to better understand this topic. Further, we consider pedagogical implications for first year programs and beyond in supporting students to develop ownership over decision making related to engineering requirements.
more »
« less
Engineering requirements and their role in engineering undergraduates’ design decision making
Undergraduate engineering students are commonly introduced to design in their first year and tackle a more authentic design challenge during senior year, with intervening courses focused on technical problem solving. Along this trajectory, students should acquire skills related to the development of engineering requirements, which are important to the technical framing of design problems. Through the lens of framing agency, this mixed-methods study explores first-year and senior students’ knowledge of engineering requirements as they engaged problems within their respective courses. Findings suggest that learning about requirements as a framing mechanism was not well-supported across the curriculum. Implications include a need to engage students in requirements development during the middle years and improve support for iterative framing and solving activities
more »
« less
- Award ID(s):
- 1751369
- PAR ID:
- 10561765
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- International Journal of Technology and Design Education
- ISSN:
- 0957-7572
- Subject(s) / Keyword(s):
- Framing Decision making Design education Engineering design Design discourse
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The research presented in this paper explores how engineering students cognitively manage concept generation and measures the effects of additional dimensions of sustainability on design cognition. Twelve first-year and eight senior engineering students generated solutions to 10 design problems. Half of the problems included additional dimensions of sustainability. The number of unique design solutions students developed and their neurocognitive activation were measured. Without additional requirements for sustainability, first-year students generated significantly more solutions than senior engineering students. First-year students recruited higher cortical activation in the brain region generally associated with cognitive flexibility, and divergent and convergent thinking. Senior engineering students recruited higher activation in the brain region generally associated with uncertainty processing and self-reflection. When additional dimensions of sustainability were present, first-year students produced fewer solutions. Senior engineering students generated a similar number of solutions. Senior engineering students required less cortical activation to generate a similar number of solutions. The varying patterns of cortical activation and different number of solutions between first-year and senior engineering students begin to highlight cognitive differences in how students manage and retrieve information in their brain during design. Students’ ability to manage complex requirements like sustainability may improve with education.more » « less
-
null (Ed.)Traditional engineering and business school courses have different pedagogical emphases. Engineering courses are perceived as technical, dense and require students to provide definitive answers to problems. On the other hand, business school courses aim to increase students' knowledge by confronting them with real-world cases and by encouraging both in- and out-of-the-classroom teamwork, thinking in groups and problem solving. In business school courses, the teaching is directed towards the thought process rather than the final answer itself. These two approaches to learning are both valuable and give the opportunity to develop complementary skills. Combining both approaches in a single course is however challenging. We tackled this challenge by designing the semester-long "Introduction to Nanobiotechnology and Nanobioscience" course for senior undergraduate and first year graduate students as a hybrid class. Our objective was to design an engineering course of standard length, which incorporates key elements of the business schools' case study approach to learning while retaining essential elements of the traditional engineering education.more » « less
-
null (Ed.)The demands of engineering writing are much different from those of general writing, which students study from grade school through first-year composition. First, the content of engineering writing is both more specific and more complex [1]. As a second difference, not only do the types of audiences vary more in engineering but so does the audience’s level of knowledge about the content. Yet a third difference is that the expected level of precision in engineering writing is much higher [2]. Still a fourth difference is that the formats for engineering reports, which call for writing in sections and for incorporating illustrations and equations, are much more detailed than the double-space essays of first-year composition. Because many engineering students do not take a technical writing course until their junior or senior year, a gap exists between what undergraduates have learned to do in general writing courses and what those students are expected to produce in design courses and laboratory courses. While some engineering colleges such as the University of Michigan have bridged the gap with instruction about engineering writing in first-year design, a few such as the University of Wisconsin-Madison have done so with first-year English [4]. Still, a third group of schools such as Purdue have done so using an integration of these courses [5]. Unfortunately, many other engineering colleges have not bridged the gap in the first year. For instance, at Penn State, first-year design is not an option for teaching engineering writing because this course spans only one semester course and has no room for another major instructional topic. In addition, at this same institution, first-year composition is not an option because the English Department is adamant about having that course’s scope remain on general writing. Although a technical writing course in the junior or senior year should theoretically bridge the gap, not understanding the differences between general writing and engineering writing poses problems for engineering students who have yet taken technical writing. For instance, not understanding the organization of an engineering report can significantly pull down a report’s grade and lead students to assume that they are inherently weak at engineering writing [6]. Another problem is that engineering students who have not bridged the gap between general writing and engineering writing are at a disadvantage when writing emails and reports during a summer internship. To bridge this gap, we have created an online resource [7] that teaches students the essential differences between general writing and the writing done by engineers. At the heart of the resource are two web pages—one on writing reports and the other on writing professional emails. Each page consists of a series of short films that provide the essential differences between the two types of writing and a quiz to ensure comprehension of the films. In addition, students have links to model documents, while faculty have links to lesson plans. Using an NSF I-Corps approach [8], which is an educational version of how to build a start-up company [9], we have developed our web resource over the past six months. Specifically, we have tested value propositions through customer interviews of faculty and students in first-year courses in which the resource has been piloted. Using the results of those customer interviews, we have revised our two web pages. This paper presents the following highlights of this effort: (1) our customer discoveries about the gap between general writing and engineering writing, (2) the corresponding pivots that we made in the online resource to respond to those discoveries, and (3) the website usage statistics that show the effects of making those pivotsmore » « less
-
Abstract This “work in progress” paper describes a multiyear project to study the development of engineering identity in a chemical and biological engineering program at Montana State University. The project focuses on how engineering identity may be impacted by a series of interventions utilizing subject material in a senior-level capstone design course and has the senior capstone design students serve as peer-mentors to first- and second-year students. A more rapid development of an engineering identity by first- and second-year students is suspected to increase retention and persistence in this engineering program. Through a series of timed interventions scheduled to take place in the first and second year, which includes cohorts that will serve as negative controls (no intervention), we hope to ascertain the following: (1) the extent to which, relative to a control group, exposure to a peer mentor increases a students’ engineering identity development over time compared to those who do not receive peer mentoring and (2) if the quantity and/or timing of the peer interactions impact engineering identity development. While the project includes interventions for both first- and second-year students, this work in progress paper focuses on the experiences of first year freshman as a result of the interventions and their development of an engineering identity over the course of the semester. Early in the fall semester, freshman chemical engineering students enrolled in an introductory chemical engineering course and senior students in a capstone design course were administered a survey which contained a validated instrument to assess engineering identity. The first-year course has 107 students and the senior-level course has 92 students and approximately 50% of the students in both cohorts completed the survey. Mid-semester, after the first-year students were introduced to the concepts of process flow diagrams and material balances in their course, senior design student teams gave presentations about their capstone design projects in the introductory course. The presentations focused on the project goals, design process and highlighted the process flow diagrams. After the presentations, freshman and senior students attended small group dinners as part of a homework assignment wherein the senior students were directed to communicate information about their design projects as well as share their experiences in the chemical engineering program. Dinners occurred overall several days, with up to ten freshman and five seniors attending each event. Freshman students were encouraged to use this time to discover more about the major, inquire about future course work, and learn about ways to enrich their educational experience through extracurricular and co-curricular activities. Several weeks after the dinner experience, senior students returned to give additional presentations to the freshman students to focus on the environmental and societal impacts of their design projects. We report baseline engineering identity in this paper.more » « less
An official website of the United States government

