skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Subtopic-specific heterogeneity in computer-based learning behaviors
Abstract BackgroundSelf-regulated learning (SRL) strategies can be domain specific. However, it remains unclear whether this specificity extends to different subtopics within a single subject domain. In this study, we collected data from 210 college students engaged in a computer-based learning environment to examine the heterogeneous manifestations of learning behaviors across four distinct subtopics in introductory statistics. Further, we explore how the time spent engaging in metacognitive strategies correlated with learning gain in those subtopics. ResultsBy employing two different analytical approaches that combine data-driven learning analytics (i.e., sequential pattern mining in this case), and theory-informed methods (i.e., coherence analysis), we discovered significant variability in the frequency of learning patterns that are potentially associated with SRL-relevant strategies across four subtopics. In a subtopic related to calculations, engagement in coherent quizzes (i.e., a type of metacognitive strategy) was found to be significantly less related to learning gains compared to other subtopics. Additionally, we found that students with different levels of prior knowledge and learning gains demonstrated varying degrees of engagement in learning patterns in an SRL context. ConclusionThe findings imply that the use—and the effectiveness—of learning patterns that are potentially associated with SRL-relevant strategies varies not only across contexts and domains, but even across different subtopics within a single subject. This underscores the importance of personalized, context-aware SRL training interventions in computer-based learning environments, which could significantly enhance learning outcomes by addressing the heterogeneous relationships between SRL activities and outcomes. Further, we suggest theoretical implications of subtopic-specific heterogeneity within the context of various SRL models. Understanding SRL heterogeneity enhances these theories, offering more nuanced insights into learners’ metacognitive strategies across different subtopics.  more » « less
Award ID(s):
2202481
PAR ID:
10561934
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
International Journal of STEM Education
Volume:
11
Issue:
1
ISSN:
2196-7822
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. IntroductionSelf-regulated learning (SRL), or learners’ ability to monitor and change their own cognitive, affective, metacognitive, and motivational processes, encompasses several operations that should be deployed during learning including Searching, Monitoring, Assembling, Rehearsing, and Translating (SMART). Scaffolds are needed within GBLEs to both increase learning outcomes and promote the accurate and efficient use of SRL SMART operations. This study aims to examine how restricted agency (i.e., control over one’s actions) can be used to scaffold learners’ SMART operations as they learn about microbiology with Crystal Island, a game-based learning environment. MethodsUndergraduate students (N = 94) were randomly assigned to one of two conditions: (1) Full Agency, where participants were able to make their own decisions about which actions they could take; and (2) Partial Agency, where participants were required to follow a pre-defined path that dictated the order in which buildings were visited, restricting one’s control. As participants played Crystal Island, participants’ multimodal data (i.e., log files, eye tracking) were collected to identify instances where participants deployed SMART operations. ResultsResults from this study support restricted agency as a successful scaffold of both learning outcomes and SRL SMART operations, where learners who were scaffolded demonstrated more efficient and accurate use of SMART operations. DiscussionThis study provides implications for future scaffolds to better support SRL SMART operations during learning and discussions for future directions for future studies scaffolding SRL during game-based learning. 
    more » « less
  2. Introductory computer science for non-majors, often referred to as CS0, is a course that is designed to be more accessible and less intimidating than CS1, with the goal of alleviating barriers and fears associated with learning computer science (CS). However, despite this intention, many students still struggle in CS0 and these courses do not always successfully prepare students for future CS learning experiences. In this paper, we study the experiences of CS0 students with a particular focus on the intersection of their metacognition, affect, and behaviors. To study students’ daily learning experiences, we collected data from 20 participants who completed structured daily diaries and retrospective interviews over the course of a single homework assignment. Through a thematic analysis of the diaries and interviews, we identified three distinct patterns of engagement that highlight the importance of metacognitive knowledge of strategies, or a students’ understanding of when, why, and how to effectively use regulation and disciplinary strategies while working on tasks. The three patterns of engagement include: (1) avoidance behaviors resulting from negative emotions, negative judgements, and a lack of metacognitive knowledge of strategies, (2) persistence or re-engagement behaviors despite negative emotions and judgements aided by metacognitive knowledge of strategies, and (3) persistence behaviors with evidence that metacognitive knowledge of strategies prevented students from forming negative judgements in the first place. We contribute an initial model of the interplay of metacognition, affect, and behaviors in CS learning, showing the role of metacognitive knowledge of strategies in helping students persist in the face of struggle. In our discussion, we advocate for explicit interventions that support students in developing metacognitive knowledge of strategies while also supporting their sometimes challenging emotional experiences. 
    more » « less
  3. Abstract Undergraduate STEM lecture courses enroll hundreds who must master declarative, conceptual, and applied learning objectives. To support them, instructors have turned to active learning designs that require students to engage inself-regulated learning(SRL). Undergraduates struggle with SRL, and universities provide courses, workshops, and digital training to scaffold SRL skill development and enactment. We examined two theory-aligned designs of digital skill trainings that scaffold SRL and how students’ demonstration of metacognitive knowledge of learning skills predicted exam performance in biology courses where training took place. In Study 1, students’ (n = 49) responses to training activities were scored for quality and summed by training topic and level of understanding. Behavioral and environmental regulation knowledge predicted midterm and final exam grades; knowledge of SRL processes did not. Declarative and conceptual levels of skill-mastery predicted exam performance; application-level knowledge did not. When modeled by topic at each level of understanding, declarative knowledge of behavioral and environmental regulation and conceptual knowledge of cognitive strategies predicted final exam performance. In Study 2 (n = 62), knowledge demonstrated during a redesigned video-based multimedia version of behavioral and environmental regulation again predicted biology exam performance. Across studies, performance on training activities designed in alignment with skill-training models predicted course performances and predictions were sustained in a redesign prioritizing learning efficiency. Training learners’ SRL skills –and specifically cognitive strategies and environmental regulation– benefited their later biology course performances across studies, which demonstrate the value of providing brief, digital activities to develop learning skills. Ongoing refinement to materials designed to develop metacognitive processing and learners’ ability to apply skills in new contexts can increase benefits. 
    more » « less
  4. Self-regulated learning (SRL) is the ability to regulate cognitive, metacognitive, motivational, and emotional states while learning and is posited to be a strong predictor of academic success. It is therefore important to provide learners with effective instructions to promote more meaningful and effective SRL processes. One way to implement SRL instructions is through providing real-time SRL scaffolding while learners engage with a task. However, previous studies have tended to focus on fixed scaffolding rather than adaptive scaffolding that is tailored to student actions. Studies that have investigated adaptive scaffolding have not adequately distinguished between the effects of adaptive and fixed scaffolding compared to a control condition. Moreover, previous studies have tended to investigate the effects of scaffolding at the task level rather than shorter time segments—obscuring the impact of individual scaffolds on SRL processes. To address these gaps, we (a) collected trace data about student activities while working on a multi-source writing task and (b) analyzed these data using a cutting-edge learning analytic technique— ordered network analysis (ONA)—to model, visualize, and explain how learners' SRL processes changed in relation to the scaffolds. At the task level, our results suggest that learners who received adaptive scaffolding have significantly different patterns of SRL processes compared to the fixed scaffolding and control conditions. While not significantly different, our results at the task segment level suggest that adaptive scaffolding is associated with earlier engagement in SRL processes. At both the task level and task segment level, those who received adaptive scaffolding, compared to the other conditions, exhibited more task-guided learning processes such as referring to task instructions and rubrics in relation to their reading and writing. This study not only deepens our understanding of the effects of scaffolding at different levels of analysis but also demonstrates the use of a contemporary learning analytic technique for evaluating the effects of different kinds of scaffolding on learners' SRL processes. 
    more » « less
  5. Abstract BackgroundMetacognitive processes have been linked to the development of conceptual knowledge in STEM courses, but previous work has centered on the regulatory aspects of metacognition. PurposeWe interrogated the relationship between epistemic metacognition and conceptual knowledge in engineering statics courses across six universities by asking students a difficult concept question with concurrent reflection prompts that elicited their metacognitive thinking. MethodWe used a mixed‐methods design containing an embedded phase followed by an explanatory phase. This design allowed us to both prompt and measure student epistemic metacognition within the learning context. The embedded phase consisted of quantitative and qualitative analyses of student responses. The explanatory phase consisted of an analysis of six instructor interviews. ResultsAnalysis of 267 student responses showed greater variation in students' epistemic metacognition than in their ability to answer correctly. Students used different kinds of epistemic metacognitive resources about the nature and origin of knowledge, epistemological forms, epistemological activities, and stances toward knowledge. These resources generally assembled into one of two frames: aconstructed knowledge framingvaluing conceptual knowledge and sense‐making, and anauthoritative knowledge framingforegrounding numerical, algorithmic problem‐solving. All six instructors interviewed described resources that align with both frames, and none explicitly considered student epistemic metacognition. ConclusionsInstructors' explicit attention to epistemic metacognition can potentially shift students to more productive frames for engineering learning. Findings here also inform two broader issues in STEM instruction: student resistance to active learning, and the direct instruction versus inquiry‐based learning debate. 
    more » « less